@proceedings {985, title = {Validation of Deep Learning techniques for quality augmentation in diffusion MRI for clinical studies}, volume = {2786}, year = {2023}, month = {2023}, abstract = {

This work gathers the results of the QuadD22 challenge, held in MICCAI 2022. We evaluate whether Deep Learning (DL) Techniques are able to improve the quality of diffusion MRI data in clinical studies. To that end, we focused on a real study on migraine, where the differences between groups are drastically reduced when using 21 gradient directions instead of 61. Thus, we asked the participants to augment dMRI data acquired with only 21 directions to 61 via DL. The results were evaluated using a real clinical study with TBSS in which we statistically compared episodic migraine to chronic migraine.

}, author = {Aja-Fernandez, Santiago and Martin-Martin, Carmen and Pieciak, Tomasz and {\'A}lvaro Planchuelo-G{\'o}mez and Faiyaz, Abrar and Uddin, Nasir and Tiwari, Abhishek and Shigwan, Saurabh J and Zheng, Tianshu and Cao, Zuozhen and Blumberg, Stefano B and Sen, Snigdha and Yigit Avci, Mehmet and Li, Zihan and Wang, Xinyi and Tang, Zihao and Rauland, Amelie and Merhof, Dorit and Manzano Maria, Renata and Campos, Vinicius P and HashemiazadehKolowri, SeyyedKazem and DiBella, Edward and Peng, Chenxu and Chen, Zan and Ullah, Irfan and Mani, Merry and Eckstrom, Samuel and Baete, Steven H and Scifitto, Scifitto and Singh, Rajeev Kumar and Wu, Dan and Goodwin-Allcock, Tobias and Slator, Paddy J and Bilgic, Berkin and Tian, Qiyuan and Cabezas, Mariano and Santini, Tales and Andrade da Costa Vieira, Marcelo and Shen, Zhimin and Abdolmotalleby, Hesam and Filipiak, Patryk and Tristan-Vega, Antonio and de Luis-Garcia, Rodrigo} } @article {995, title = {Validation of deep learning techniques for quality augmentation in diffusion MRI for clinical studies}, journal = {NeuroImage: Clinical}, volume = {39}, year = {2023}, pages = {103483}, abstract = {

The objective of this study is to evaluate the efficacy of deep learning (DL) techniques in improving the quality of diffusion MRI (dMRI) data in clinical applications. The study aims to determine whether the use of artificial intelligence (AI) methods in medical images may result in the loss of critical clinical information and/or the appearance of false information. To assess this, the focus was on the angular resolution of dMRI and a clinical trial was conducted on migraine, specifically between episodic and chronic migraine patients. The number of gradient directions had an impact on white matter analysis results, with statistically significant differences between groups being drastically reduced when using 21 gradient directions instead of the original 61. Fourteen teams from different institutions were tasked to use DL to enhance three diffusion metrics (FA, AD and MD) calculated from data acquired with 21 gradient directions and a b-value of 1000 s/mm2. The goal was to produce results that were comparable to those calculated from 61 gradient directions. The results were evaluated using both standard image quality metrics and Tract-Based Spatial Statistics (TBSS) to compare episodic and chronic migraine patients. The study results suggest that while most DL techniques improved the ability to detect statistical differences between groups, they also led to an increase in false positive. The results showed that there was a constant growth rate of false positives linearly proportional to the new true positives, which highlights the risk of generalization of AI-based tasks when assessing diverse clinical cohorts and training using data from a single group. The methods also showed divergent performance when replicating the original distribution of the data and some exhibited significant bias. In conclusion, extreme caution should be exercised when using AI methods for harmonization or synthesis in clinical studies when processing heterogeneous data in clinical studies, as important information may be altered, even when global metrics such as structural similarity or peak signal-to-noise ratio appear to suggest otherwise.

}, keywords = {Angular resolution, Artificial Intelligence, Deep learning, Diffusion tensor, diffusion MRI, machine learning}, issn = {2213-1582}, doi = {https://doi.org/10.1016/j.nicl.2023.103483}, url = {https://www.sciencedirect.com/science/article/pii/S2213158223001742}, author = {Santiago Aja-Fern{\'a}ndez and Carmen Mart{\'\i}n-Mart{\'\i}n and {\'A}lvaro Planchuelo-G{\'o}mez and Abrar Faiyaz and Md Nasir Uddin and Giovanni Schifitto and Abhishek Tiwari and Saurabh J. Shigwan and Rajeev Kumar Singh and Tianshu Zheng and Zuozhen Cao and Dan Wu and Stefano B. Blumberg and Snigdha Sen and Tobias Goodwin-Allcock and Paddy J. Slator and Mehmet Yigit Avci and Zihan Li and Berkin Bilgic and Qiyuan Tian and Xinyi Wang and Zihao Tang and Mariano Cabezas and Amelie Rauland and Dorit Merhof and Renata Manzano Maria and Vin{\'\i}cius Paran{\'\i}ba Campos and Tales Santini and Marcelo Andrade da Costa Vieira and SeyyedKazem HashemizadehKolowri and Edward DiBella and Chenxu Peng and Zhimin Shen and Zan Chen and Irfan Ullah and Merry Mani and Hesam Abdolmotalleby and Samuel Eckstrom and Steven H. Baete and Patryk Filipiak and Tanxin Dong and Qiuyun Fan and Rodrigo de Luis-Garc{\'\i}a and Antonio Trist{\'a}n-Vega and Tomasz Pieciak} } @article {980, title = {Viability of AMURA biomarkers from single-shell diffusion MRI in clinical studies}, journal = {Frontiers in Neuroscience}, volume = {17}, year = {2023}, pages = {1106350}, abstract = {

Diffusion Tensor Imaging (DTI) is the most employed method to assess white matter properties using quantitative parameters derived from diffusion MRI, but it presents known limitations that restrict the evaluation of complex structures. The objective of this study was to validate the reliability and robustness of complementary diffusion measures extracted with a novel approach, Apparent Measures Using Reduced Acquisitions (AMURA), with a typical diffusion MRI acquisition from a clinical context in comparison with DTI with application to clinical studies. Fifty healthy controls, 51 episodic migraine and 56 chronic migraine patients underwent single-shell diffusion MRI. Four DTI-based and eight AMURA-based parameters were compared between groups with tract-based spatial statistics to establish reference results. On the other hand, following a region-based analysis, the measures were assessed for multiple subsamples with diverse reduced sample sizes and their stability was evaluated with the coefficient of quartile variation. To assess the discrimination power of the diffusion measures, we repeated the statistical comparisons with a region-based analysis employing reduced sample sizes with diverse subsets, decreasing 10 subjects per group for consecutive reductions, and using 5,001 different random subsamples. For each sample size, the stability of the diffusion descriptors was evaluated with the coefficient of quartile variation. AMURA measures showed a greater number of statistically significant differences in the reference comparisons between episodic migraine patients and controls compared to DTI. In contrast, a higher number of differences was found with DTI parameters compared to AMURA in the comparisons between both migraine groups. Regarding the assessments reducing the sample size, the AMURA parameters showed a more stable behavior than DTI, showing a lower decrease for each reduced sample size or a higher number of regions with significant differences. However, most AMURA parameters showed lower stability in relation to higher coefficient of quartile variation values than the DTI descriptors, although two AMURA measures showed similar values to DTI. For the synthetic signals, there were AMURA measures with similar quantification to DTI, while other showed similar behavior. These findings suggest that AMURA presents favorable characteristics to identify differences of specific microstructural properties between clinical groups in regions with complex fiber architecture and lower dependency on the sample size or assessing technique than DTI.

}, issn = {1662-453X}, doi = {10.3389/fnins.2023.1106350}, url = {https://www.frontiersin.org/articles/10.3389/fnins.2023.1106350}, author = {Mart{\'\i}n-Mart{\'\i}n, Carmen and {\'A}lvaro Planchuelo-G{\'o}mez and Guerrero, {\'A}ngel L. and Garc{\'\i}a-Azor{\'\i}n, David and Trist{\'a}n-Vega, Antonio and de Luis-Garc{\'\i}a, Rodrigo and Aja-Fern{\'a}ndez, Santiago} } @article {749, title = {Vortical Features for Myocardial Rotation Assessment in Hypertrophic Cardiomyopathy using Cardiac Tagged Magnetic Resonance}, journal = {Medical Image Analysis}, volume = {In Press}, year = {2018}, month = {04/2018}, type = {Original Article}, abstract = {

Left ventricular rotational motion is a feature of normal and diseased cardiac function. However, classical torsion and twist measures rely on the definition of a rotational axis which may not exist. This paper reviews global and local rotation descriptors of myocardial motion and introduces new curl-based (vortical) features built from tensorial magnitudes, intended to provide better comprehension about fibrotic tissue characteristics mechanical properties. Fifty-six cardiomyopathy patients and twenty-two healthy volunteers have been studied using tagged magnetic resonance by means of harmonic phase analysis. Rotation descriptors are built, with no assumption about a regular geometrical model, from different approaches. The extracted vortical features have been tested by means of a sequential cardiomyopathy classification procedure; they have proven useful for the regional characterization of the left ventricular function by showing great separability not only between pathologic and healthy patients but also, and specifically, between heterogeneous phenotypes within cardiomyopathies.

}, doi = {10.1016/j.media.2018.03.005}, author = {Santiago Sanz-Est{\'e}banez and Lucilio Cordero-Grande and T. Sevilla-Ruiz and A. Revilla-Orodea and Rodrigo de Luis-Garc{\'\i}a and M Martin-Fernandez and Carlos Alberola-Lopez} } @article {860, title = {A visible-range computer-vision system for automated, non-intrusive assessment of the pH value in Thomson oranges}, journal = {Computers In Industry}, volume = {99}, year = {2018}, chapter = {69-82} } @conference {655, title = {Variance Stabilization of Noncentral-Chi Data: Application to Noise Estimation in MRI}, booktitle = {2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, 2016}, year = {2016}, month = {2016}, address = {Prague, Czech Republic}, author = {Tomasz Pieciak and Gonzalo Vegas-S{\'a}nchez-Ferrero and Santiago Aja-Fern{\'a}ndez} } @proceedings {582, title = {Validez de los criterios DSM-IV en el diagnostico del TDAH. Nuevas perspectivas de investigaci{\'o}n. Mesa Redonda. Ponencia Invitada}, volume = {61}, year = {2012}, pages = {39-43}, address = {Granada, Spain}, author = {L{\'o}pez-Villalobos, Jos{\'e} Antonio and Jesus Maria Andres-de-Llano and Susana Alberola-Lopez and Pablo Casaseca-de-la-Higuera and Diego Mart{\'\i}n-Mart{\'\i}nez and Julio Ardura-Fernández and Carlos Alberola-Lopez} } @conference {merino2010variationally, title = {A variationally based weighted re-initialization method for geometric active contours}, booktitle = {Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on}, year = {2010}, pages = {908{\textendash}911}, publisher = {IEEE}, organization = {IEEE}, author = {S. Merino-Caviedes and Gonzalo Vegas-S{\'a}nchez-Ferrero and P{\'e}rez, M Teresa and Santiago Aja-Fern{\'a}ndez and Marcos Martin-Fernandez} }