A VARIATIONAL METHOD FOR SCAR SEGMENTATION WITH MYOCARDIAL CONTOUR CORRECTION IN DE-CMR IMAGES

S. Merino-Caviedes 1, L. Cordero-Grande 2, M. T. Pérez Rodríguez 3, M. T. Sevilla-Ruiz 4, A. Revilla-Orodea 4, M. Martín-Fernández 1, C. Alberola-López 1

1 Laboratorio de Procesado de Imagen, Universidad de Valladolid, Spain
2 Department of Biomedical Engineering, King's College London, London, UK
3 Departamento de Matemática Aplicada, Universidad de Valladolid, Spain
4 Instituto de Ciencias del Corazón, Hospital Clínico Universitario, Valladolid, Spain
Index

• Introduction
 • Motivation
 • DE-CMR Segmentation
 • Objectives
• Proposed Algorithm
 • Variational Framework
 • Label Posterior Probability Formulation
 • Contour Regularization
• Experimental Results
• Conclusions
Motivation

- Cardiac MR images:
 - Good contrast between soft tissues
 - The full heart can be imaged
 - There are many modalities: CINE, Tagging, DE-CMR...
- DE-CMR allows the identification of scarred tissue in the myocardium.
Review of DE-CMR Segmentation

- Most current methods restrict the segmentation of the myocardium.
 - It simplifies the problem.
 - What if there are misalignments in the myocardial mask?

<table>
<thead>
<tr>
<th>Method</th>
<th>Myocard. Contours</th>
<th>Scar identification method</th>
<th>Post Processing included in the method</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFA1 [5]</td>
<td>Fixed</td>
<td>2 step thresholding</td>
<td>FP, FN removal by feature analysis, region growing and hole filling</td>
</tr>
<tr>
<td>TFA2 [10]</td>
<td>Fixed</td>
<td>2 step thresholding</td>
<td>FP, FN removal by feature analysis</td>
</tr>
</tbody>
</table>

Review of DE-CMR Segmentation

- Most current methods restrict the segmentation of the myocardium.
 - It simplifies the problem.
 - What if there are misalignments in the myocardial mask?

<table>
<thead>
<tr>
<th>Method</th>
<th>Myocard. Contours</th>
<th>Scar identification method</th>
<th>Post Processing included in the method</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFA1 [5]</td>
<td>Fixed</td>
<td>2 step thresholding</td>
<td>FP, FN removal by feature analysis, region growing and hole filling</td>
</tr>
<tr>
<td>TFA2 [10]</td>
<td>Fixed</td>
<td>2 step thresholding</td>
<td>FP, FN removal by feature analysis</td>
</tr>
</tbody>
</table>

Review of DE-CMR Segmentation

- Most current methods restrict the segmentation of the myocardium.
 - It simplifies the problem.
 - What if there are misalignments in the myocardial mask?

<table>
<thead>
<tr>
<th>Method</th>
<th>Myocard. Contours</th>
<th>Scar identification method</th>
<th>Post Processing included in the method</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFA1 [5]</td>
<td>Fixed</td>
<td>2 step thresholding</td>
<td>FP, FN removal by feature analysis, region growing and hole filling</td>
</tr>
<tr>
<td>TFA2 [10]</td>
<td>Fixed</td>
<td>2 step thresholding</td>
<td>FP, FN removal by feature analysis</td>
</tr>
</tbody>
</table>

Objectives

- To propose a segmentation method for DE-CMR that:
 - Is able to modify the myocardial contours if necessary
 - Provides smoothness to the myocardial contours.
 - At the same time, uses the information provided by a CINE segmentation to increase robustness.

- To explore how the state of the art segmentation methods behave:
 - when the myocardial contours have misalignments.
 - with non ischemic myocardiopathies.
Variational Framework

\[\mathcal{L} = \{C, H, S, B\} \quad \text{DE-CMR labels} \]
\[\mathcal{A} = \{C, M, B\} \quad \text{CINE labels} \]

- C: Blood cavity
- M: Myocardium
- B: Background
- H: Healthy tissue
- S: Scar

Convex Potts Model (From [7])

\[
\min_{u(x) \in \Delta_+} \Psi(u) = \sum_{l \in \mathcal{L}} \int_{\Omega} \left(f_l(x) u_l(x) + g_l(x) \left| \nabla u_l(x) \right| \right) dx
\]

Data Fidelity

Contour Regularization

\[f_{L_i}(x) = -\ln \left(P \left(L_i(x) \mid I(x) \right) \right) \]

Label Posterior Probability Formulation

\[
P(L_i|I) = \frac{\sum_{k=1}^{K} P(I|A_k, L_i) P(L_i|A_k) P(A_k)}{\sum_{j=1}^{L} \sum_{k=1}^{K} P(I|A_k, L_j) P(L_j|A_k) P(A_k)}
\]

\[
P(I|A_k, L_i)
\]
 - Models the probabilistic distribution of \(I(x) \).
 - Assumption of independence with respect to \(\hat{A}(x) \).
 - The Rician distribution is chosen for the blood and the myocardial tissues.

\[
P(A_k)
\]
 - Probability of the CINE label \(A_k \).
 - Decays with the distance to the CINE ROI \(k \).
 - The binary indicator function for all \(A_k \) are smoothed with a Gaussian kernel and normalized.
Label Posterior Probability Formulation

\[
P(L_i | I) = \frac{\sum_{k=1}^{K} P(I | A_k, L_i) P(L_i | A_k) P(A_k)}{\sum_{j=1}^{L} \sum_{k=1}^{K} P(I | A_k, L_j) P(L_j | A_k) P(A_k)}
\]

- Controls the influence of the CINE segmentation and the image likelihood **locally**.
- The value at each location is a linear combination of 3 extreme situations:
 - Fully trust the CINE probability
 - Fully trust the a priori tissue probability...
 - ...at the epicardial border
 - ...at the endocardial border
 - Weights are computed using the edge information of the DE-CMR image.
The regularization local weights $g_i(x)$ depend on the image gradient \textit{AND} the CINE segmentation:

\[
\begin{align*}
 g_C(x) &= \gamma_0 H(1 - a_1(x), \varepsilon) + \gamma_c r(x) H(a_1(x), \varepsilon) \\
 g_H(x) &= \gamma_0 H(1 - a_2(x), \varepsilon) + \gamma_t r(x) H(a_2(x), \varepsilon) \\
 g_S(x) &= g_H(x) \\
 g_B(x) &= \gamma_0 H(1 - a_3(x), \varepsilon) + \gamma_c r(x) H(a_3(x), \varepsilon) \\
 r(x) &= H \left((3/2)\sigma_{b(x)} - b(x), \varepsilon \right)
\end{align*}
\]
Experimental Setup

- 11 studies from Hypertrophic Cardiomyopathy patients.
- Quality metric: Dice Index (DI)

\[DI = \frac{2|GT \cap S|}{|GT| + |S|} \]
Experimental Results

<table>
<thead>
<tr>
<th>Study</th>
<th>TFA1</th>
<th>TFA2</th>
<th>PWD</th>
<th>PROP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.407</td>
<td>0.638</td>
<td>0.533</td>
<td>0.688</td>
</tr>
<tr>
<td>2</td>
<td>0.554</td>
<td>0.595</td>
<td>0.359</td>
<td>0.677</td>
</tr>
<tr>
<td>3</td>
<td>0.674</td>
<td>0.569</td>
<td>0.620</td>
<td>0.700</td>
</tr>
<tr>
<td>9</td>
<td>0.183</td>
<td>0.213</td>
<td>---</td>
<td>0.207</td>
</tr>
</tbody>
</table>

DI between the scar and healthy tissue ROIs yielded by the considered segmentation methods.
Conclusions

• A variational segmentation method for DE-CMR where:
 • The scar is identified
 • The myocardial contours may be modified.
 • The data fidelity uses a Bayesian approach that takes into account both the image intensity probability distributions and a registered myocardial segmentation coming from CINE.
 • The CINE myocardial segmentation is also used to compute the regularization weights.
• The correction of the myocardial contours improves the scar identification.
• The correction is stronger in the volumes with lower CINE myocardial alignment.
Thank you!