

CLASSIFICATION OF DELAYED ENHANCEMENT SCAR ISLANDS BY MEANS OF THEIR LOCAL SUBENDOCARDIAL TRANSMURALITY

Susana Merino-Caviedes¹, Lucilio Cordero-Grande¹, Teresa Sevilla², Teresa Pérez³, Marcos Martín-Fernández¹, Carlos Alberola-López¹

¹ Laboratorio de Procesado de Imagen, Universidad de Valladolid, Spain
² Servicio de Cardiología, Hospital Clínico Universitario, Valladolid, Spain
³ Dpto. de Matemática Aplicada, Universidad de Valladolid, Spain

ΜοτινατιοΝ

- ► DE-MR detects infarcted tissue or fibrosis within the myocardium.
- In ischemic cardiopathy (ICM), there is a lack of blood supply which affects the endocardium first.
 - ightarrow Subendocardial or Transmural (S/T) scar configuration.
- The scar configuration on *nonischemic cardiomyopathies* usually provides qualitative insight into their etiology.

GENERAL COMPUTATIONAL FRAMEWORK

- Midwall or Subepicardial (M/E) scar configurations suggest a nonischemic origin for the cardiomyopathy.
- Hypertrophic Cardiomyopathy (HCM) often presents midwall scar islands.
- No efforts towards the quantification of the scar intramural configuration have been carried out, to the best of our knowledge.

ISLAND IDENTIFICATION

LOCAL SUBENDOCARDIAL TRANSMURALITY (LSTM)

The current conception of the transmurality:

is the ratio of the myocardial thickness covered by scar.

Figure: Bullseye of

the transmurality of

an ICM patient.

CLASSIFICATION

- The normalized histogram of the LSTM values within each island are computed.
- Noticeable difference between:
 - S/T configuration: LSTM mostly unitary.
 - M/E configuration: wider value range for LSTM.
- The classifier linearly correlates the input histogram against a training set of S/T and M/E histograms.
- The input histogram is assigned the class of the training histogram which yielded the highest correlation.

EXPERIMENTAL RESULTS

- is averaged by sectors \Rightarrow Loss of local detail
- does not take into account the intramural location of the scar.

The LSTM redefines the concept of transmurality so that [1]:

- It is defined as a dense local map the myocardium
- t(x) is the transmurality computed between x and the endocardium.
- Contains information on the scar local and intramural configuration.

- Figure: Epicardial LSTM (same patient).
- At the *epicardium*, LSTM takes on the full transmurality value.

(d)

- ► 20 short-axis DE-MR from HCM and ICM patients were employed.
- From them, a total of 30 islands were identified and annotated as S/T and M/E.
- Training set: 2 S/T islands and 3 M/E islands. Test set: 25 islands.
- Paired Mann-Whitney U-test: training S/T and M/E islands have different medians (p < 10⁻⁶⁵).

Classification success of 95%. Only one

S/T island was misclassified as M/E. ^{0.9} ^{0.8} ^{0.7} ^{0.6} ^{0.6} ^{0.5} ^{0.4} ^{0.6} ^{0.5} ^{0.4} ^{0.6} ^{0.5} ^{0.4} ^{0.5} ^{0.6} ^{0.5} ^{0.4} ^{0.5} ^{0.6} ^{0.6} ^{0.5} ^{0.6} ^{1.5} ^{1.5}

Figure: Theoretical 1D profiles of different scar configurations with a full transmurality value of 0.5.

(e)

(f)

[1] Merino-Caviedes S, Cordero-Grande L, Revilla-Orodea A, Sevilla-Ruiz T, Pérez MT, Martín-Fernández M, Alberola-López C. Multi-stencil streamline fast marching: a general 3D framework to determine myocardial thickness and transmurality in late enhancement images. IEEE Trans Med Imag. In press.

ACKNOWLEDGEMENTS

This work was partially supported by the Spanish Ministerio de Ciencia e Innovación and the Fondo Europeo de Desarrollo Regional under Research Grant TEC2010-17982, the Spanish Instituto de Salud Carlos III under Research Grant PI11–01492, and the European Commission under Research Grant FP7-223920. The work was also funded by the Spanish Junta de Castilla y León under Grants VA376A11-2, GRS 474/A/10, SAN103/VA40/11 and SAN126/VA033/09.

Figure: LSTM normalized histograms of the island set.

CONCLUSIONS

- A computational framework for the classification of myocardial scar configurations was developed.
- The scar intramural configuration can be extracted from the Local Subendocardial Transmurality (LSTM).
- Inspection of local measures on islands provides complementary information to the sector average approach.
- This work is a step towards a computer-aided tool for the diagnosis and risk stratification of nonischemic cardiomyopathies.