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1.5 The signpost of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1 Introduction

The magnetic resonance imaging (MRI) is one of the most relevant medical modality, which
enables to inspect a human body in a non-invasive way. It allows investigating both the
structural and functional properties of the tissues. A typical MRI acquisition is affected by
inherent noise, whether a static or dynamic image series is considered. The noise in MRI
occurs under different forms including physiological (Triantafyllou et al. 2011, Fratini et al.
2014) and thermal noise also called Johnson-Nyquist noise (Macovski 1996, Aja-Fernández
and Tristán-Vega 2013). The physiological noise results from the patient itself (mainly from
cardiac and respiratory processes). In this thesis, however, we are interested in thermal noise.
It orginates from a stochastic motion of free electrons in the radiofrequency coil and by eddy
current losses in the patient, which are inductively coupled to the coil (Henkelman 1985,
McVeigh et al. 1985, Macovski 1996).

The thermal noise is one of the most crucial deterioration source in MRI data significantly
reducing the quality of the images. Apart from the quality impoverishment of the data, the
noise1 affects further stages of data processing pipeline, e.g., image segmentation and regis-
tration procedures (Zhang et al. 2001, Rohde et al. 2005), accuracy of parameter estimation
in diffusion tensor imaging (DTI) (Anderson 2001, Tristán-Vega et al. 2012a, Gahm et al.
2014), fiber tracts reconstructions in diffusion tensor tractography (Reichenbach et al. 2014)
and accuracy of quantitative parameters in cardiovascular imaging (Sandino et al. 2015).
Furthermore, the disturbed MRI data sets might have even more serious consequences in
a diagnostic performance of the image-derived metrics like signal-to-noise ratio (SNR) and
contrast-to-noise ratio (CNR) (Yu et al. 2011), or a precise evaluation of tumour tissues
(Dikaios et al. 2014).

1For the sake of simplicity we will henceforth use the term noise referring to thermal noise.
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Figure 1.1: Spatially variant noise estimation from a single accelerated parallel MR image.

Typically, the noise is assumed to be homogeneous in single-coil acquisitions (Aja-
Fernández et al. 2008, Aja-Fernández et al. 2009, Pieciak 2014). We refer to this kind of
noise as a stationary noise, since the variance of the noise is assumed not to change with
the position in the reconstructed magnitude MRI data. Over the last decade multiple-coil
scanners have systematically been replacing single-coil devices. The main reason behind this
is to improve the SNR of the magnitude MR image, while keeping a large field-of-view (FOV)
(Constantinides et al. 1995, Constantinides et al. 1997). Another potential possibility of the
multiple-coil system is to speed-up the acquisition. This is especially important feature for
breath-hold cinematographic (CINE) cardiac imaging and diffusion-weighted imaging (DWI)
of fibrous tissues like white matter of the brain or spinal cord.

Nowadays, however, more sophisticated accelerated parallel image reconstruction tech-
niques like SENSE (SENSitivity Encoding) (Pruessmann et al. 1999) or GRAPPA (Gen-
eRalized Autocalibrating Partially Parallel Acquisition) (Griswold et al. 2002) have been
commonly used in clinical and research practices. These modalities collect the MR signal
not only in a parallel fashion, but they also subsample raw MRI data. Specifically, these
techniques enable to reconstruct the final MR image from partial information acquired by
each receiver coil. This improvement over multiple-coil acquisitions significantly reduces ac-
quisition time and consequently raises the patient comfort. For accelerated parallel MRI
techniques the stationarity of the noise can no longer be assumed (Aja-Fernández et al.
2011, Aja-Fernández et al. 2014a, Aja-Fernández et al. 2014b). This means that the noise is
not represented by a single value like in single-coil acquisitions, but it is now a non-stationary
process and it changes over the FOV.

This PhD thesis concerns the comprehensive statistical modelling of the noise in accel-
erated parallel MRI acquisitions. Since the noise component in magnitude data obtained
from SENSE MRI and GRAPPA MRI cannot simply be assumed as additive white Gaus-
sian process, there is a clear and urgent need to use advanced statistical models, which take
signal-dependency and non-stationarity of the noise into account. The non-stationary Rician
and non-stationary noncentral Chi (nc-χ) models became the fundamental part of modern
adaptive noise-driven digital image processing tools in accelerated parallel MRI as they show
considerable effectiveness improvements of the algorithms over Gaussian models.

In this thesis, the author proposes a new theoretical framework to deal with non-Gaussian
distributed signals using variance-stabilizing transformations (VSTs). The VST changes
a signal-dependent nature of non-Gaussian noise into a signal-independent one. To put it
differently, the noise component in variance-stabilized data might be considered as additive
white Gaussian noise. Consequently, complicated non-Gaussian models or empirical cor-
rections to Rician/nc-χ distributions are no longer necessary as they can be replaced by
calculations in variance-stabilized domain of the image.
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The statistics-oriented thinking about the noise leads to the key application of the pro-
posed VST in context of non-stationary signal-dependent noise estimation. In this thesis, we
focus on the estimation of noise patterns from non-stationary Rician and nc-χ distributed
data. As stated in previous paragraph these types of noise can be found in accelerated par-
allel MRI data like SENSE MRI and GRAPPA MRI. Consequently, the purpose of this
PhD thesis is to retrieve spatially variant noise patterns from accelerated parallel
MRI data using only a single image (see Fig. 1.1).

1.2 Motivation

A proper noise modelling is an inherent task of almost every stage of MRI data processing
pipeline. The accurate knowledge about the noise affecting the data can be employed
in adaptive image processing procedures (Aja-Fernández et al. 2008, Krissian and Aja-
Fernández 2009), SNR/CNR quantifications (Yu et al. 2011) or quality assurance testing
of the MRI scanner (Davids et al. 2014). The noise estimation is a particularly desirable
procedure for a retrospectively reconstructed magnitude MRI data, where no information
about the parameters of the acquisition process is available.

The applications of the estimated noise patterns can be found at different stages of
MRI data processing pipeline including:

• image denoising – Adaptive image denoising procedures employ noise estimates to
modify the characteristics of the filters. In context of MRI such approaches usually
take distributional properties of the signal into account and estimate the underlying
noise-free signal, e.g., linear minimum mean square error (LMMSE) estimator (Aja-
Fernández et al. 2008, Aja-Fernández et al. 2009, Tristán-Vega and Aja-Fernández
2010), majorize-minimize framework (Varadarajan and Haldar 2015) or maximum like-
lihood (ML) estimator (He and Greenshields 2009). On the other hand, image process-
ing approaches, like the non-local means filter (Manjón et al. 2010, Tristán-Vega et al.
2012b), utilize the noise estimates to set the strength (intensity) of the filtering process.

• parameter estimation in diffusion tensor (kurtosis) imaging – Although fundamental
techniques in diffusion MRI use least squares approach to retrieve the parameters of
directionality of water diffusion, more advanced concepts like ML estimator (Veraart
et al. 2011, Veraart et al. 2013) or sequential estimator (Casaseca-de-la Higuera et al.
2012) require noise variance to carry out the fitting procedure.

• image segmentation – Image segmentation methods based on mixture models use the
noise variance estimates in the expectation-maximization (EM) framework to fit the
models to the data, e.g., Rician mixture model (Roy et al. 2012), Gaussian mixture
model (Greenspan et al. 2006, Czajkowska and Pietka 2014),

• estimation of diffusion profiles from high angular resolution diffusion imaging (HARDI)
– The noise estimates are used to fit a spherical harmonic to the MRI data. This enables
to provide a continuous representation of the diffusion profile at each voxel of the data
(Tristan-Vega et al. 2010, Varadarajan and Haldar 2015).
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1.3 The proved thesis

In this work, the following thesis is defined and proved:

Maps of non-stationary noise generated by parallel MRI reconstruction
can be accurately estimated from a single acquisition

without any additional information needed.

1.4 Related papers to the author

The author of the thesis contributed to the following journal papers:

1. Pieciak, T., Vegas-Sánchez-Ferrero, G., Aja-Fernández, S., Non-stationary Ri-
cian noise estimation in parallel MRI using a single image: A variance-stabilizing
approach, IEEE Transactions on Pattern Analysis and Machine Intelligence, (Impact
factor: 5.781) (Pieciak et al. 2016a) – second review,

2. Aja-Fernández, S., Pieciak, T., and Vegas-Sánchez-Ferrero, G., Spatially variant noise
estimation in MRI: A homomorphic approach., Medical Image Analysis, 20(1), 2015,
184–197. (Impact factor: 3.654) (Aja-Fernández et al. 2015b),

and the conference papers:

1. Pieciak, T., Vegas-Sánchez-Ferrero, G., Aja-Fernández, S., Variance stabi-
lization of noncentral-Chi data: application to noise estimation in MRI, In:
IEEE International Symposium on Biomedical Imaging (ISBI), 2016, 1376–1379.
Prague, Czech Republic (Acceptance ratio for oral presentation: 20.5%). (Pieciak et al.
2016b),

2. Pieciak T., The maximum spacing noise estimation in single-coil background MRI
data, In: IEEE International Conference on Image Processing (ICIP), 2014, 1743–
1747. Paris, France (Acceptance Ratio: 43%). (Pieciak 2014).

1.5 The signpost of the thesis

This PhD thesis is divided into two parts: the background and the contributions. The
former part is devoted to presenting basic information about image reconstruction processes
in MRI and statistical distributions employed in modelling the noisy data. We also review
the state-of-the-art in spatially variant noise estimation in accelerated parallel MRI. In
the latter part of the thesis, we demonstrate our contributions to spatially variant noise
estimation in accelerated parallel MRI. We evaluate then our proposals using synthetic and
real MRI data in comparison with the state-of-the-art algorithms.
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Below, we provide the details of each section of the thesis. The following topics are raised
in the the background part of the thesis:

• section 2 – In this section, a physical phenomena behind the MRI is presented. Then,
we focus on reconstruction processes of the data in single-coil, multiple-coil and accel-
erated parallel MRI acquisitions particularly with attention to SENSE and GRAPPA.

• section 3 – This section is devoted to inspecting the statistical models commonly
used to represent the data coming from MRI acquisitions. We present the statistical
properties of the underlying noise in raw MRI data, and then we investigate how the
noise propagates in the image reconstruction pipeline depending on the algorithm used
to obtain the magnitude image.

• section 4 – We provide the most up-to-date review of the state-of-the-art in non-
stationary Gaussian, Rician and nc-χ noise estimation algorithms developed for MRI.
This analysis will serve us to establish the main drawbacks of current approaches and
then verify our proposals in the contribution part of the thesis.

In the the contribution part, we investigate the topics:

• section 5 – The non-stationary Rician noise estimation.
We derive the numerical transformation within the variance-stabilizing framework for
the case of Rician distributed data. We later introduce the spatially variant noise
estimation method for non-stationary Rician distributed data employing proposed VST
and Gaussian homomorphic filtering process. Finally, our proposal is compared to
fourteen state-of-the-art methods estimating the noise patterns from a single MR image
and four methods arranging repeated scans.

• section 6 – The non-stationary nc-χ noise estimation.
We analytically derive an asymptotic stabilizer for squared nc-χ distributed random
variable and we propose a robust numerical model to improve the performance of the
asymptotic transformation for low SNRs. Then, we present a spatially variant noise
estimation algorithm in the variance-stabilizing framework intended for non-stationary
nc-χ distributed data. The comparison is made against five state-of-the-art methods.
We additionally show that any Gaussian method can be employed now for spatially vari-
ant noise estimation in non-stationary nc-χ data using the proposed variance-stabilizing
framework.
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2.1 Introduction

In this chapter, we provide the fundamentals of MRI technique focusing on the nuclear
magnetic resonance physical phenomenon. Although the physical aspects of MRI are not
used in the contribution part of the thesis, we explain basic physical phenomenon behind
the MRI for clarity the information given later in this chapter. We define the magnetic
momentum of hydrogen nucleus, which is induced by a nuclear spin and therefore we present
the excitation and relaxation phenomena being part of the NMR signal formation.

Then, we focus on image reconstruction algorithms used to obtain the magnitude images
from a signal processing perspective. We illustrate reconstruction processes in single-coil and
in multiple-coil MRI acquisitions, since their introduction allows us a better understand-
ing the topics connected with accelerated parallel MRI. We focus then on more advanced
concepts, i.e., accelerated parallel MRI. We particularly investigate SENSE and GRAPPA
methods being two most popular accelerated parallel MRI acquisition techniques in clinical
and research communities.

2.2 Nuclear magnetic resonance physical phenomenon

The theoretical foundations of MRI technique has been proposed by Paul C. Lauterbur1

(Lauterbur 1973) and Sir Peter Mansfield2 (Mansfield and Grannell 1973). The scientists
were honored by the Nobel Prize in Physiology or Medicine in 2003 by Karolinska Insti-
tutet for “their discoveries concerning magnetic resonance imaging”. In comparison with
X-radiation imaging (X-ray), computed tomography (X-ray CT) and positron emission to-
mography (PET), the MRI does not use ionizing radiation or radioactive nuclides. This means
that MRI scanning is safe for a biological cell provided that the patient and a technician
follow MRI safety policies and procedures.

The MRI is based on a nuclear magnetic resonance (NMR) physical phenomenon, which
was independently observed by Felix Bloch3 (Bloch 1946) and Edward Mills Purcell4 (Purcell
et al. 1946). In 1952, the scientists were honored by the Nobel Prize in Physics for “their
development of new ways and methods for nuclear magnetic precision measurements”. The
NMR phenomenon states that if a sample is placed in a static magnetic field and then it
is subjected to a radiofrequency (RF) pulse at the appropriate frequency, the nuclei in that
sample absorbs the energy. After the end of the RF pulse, the nuclei generate the signal,
which is therefore measured by a receiver coil.

In the context of MRI, we are particularly interested in hydrogen nuclei because their
abundance in water and fat – the main components of human body (Berger 2002). The
hydrogen nucleus 1H (a single proton) can be described by four main parameters, namely
the mass, electric charge, angular momentum (called spin) and an associated magnetic mo-
mentum. The fundamental role in NMR phenomenon plays the magnetic momentum of the
proton, which is induced by the nuclear spin.

The NMR phenomenon arises in the external static magnetic field with induction B0 and
the time-varying magnetic field (RF pulse) B1 (see Fig. 2.1a). Initially, in the absence of
the external magnetic field B0, the magnetic moments (vectors) of the protons are oriented
randomly leading to the null net magnetization (Fig. 2.1b). When the external static mag-
netic field B0 is applied, the magnetic moments are aligned parallelly or anti-parallelly to
the direction of B0 (Fig. 2.1b). Furthermore, the magnetic moments precess about the axis

1http://www.nobelprize.org/nobel_prizes/medicine/laureates/2003/lauterbur-bio.html
2http://www.nobelprize.org/nobel_prizes/medicine/laureates/2003/mansfield-bio.html
3http://www.nobelprize.org/nobel_prizes/physics/laureates/1952/purcell-bio.html
4http://www.nobelprize.org/nobel_prizes/physics/laureates/1952/bloch-bio.html

http://www.nobelprize.org/nobel_prizes/medicine/laureates/2003/lauterbur-bio.html
http://www.nobelprize.org/nobel_prizes/medicine/laureates/2003/mansfield-bio.html
http://www.nobelprize.org/nobel_prizes/physics/laureates/1952/purcell-bio.html
http://www.nobelprize.org/nobel_prizes/physics/laureates/1952/bloch-bio.html
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Figure 2.1: (a) The orientations of the external static magnetic field B0 and the RF
pulse B1. (b) – (I) Randomly oriented magnetic moments of the protons, (II) parallelly or
anti-parallelly to the direction of B0 oriented magnetic moments, and (III) the precession of
an individual magnetic moment about the axis of the magnetic field B0 with the frequency ω0.

of the field B0 with the frequency ω0 = γ |B0| (called Larmor frequency), where γ is the
gyromagnetic ratio and |B0| is the magnitude of the magnetic field B0 (Fig. 2.1b). In a ther-
modynamic equilibrium, however, the magnetic moments oriented parallelly to the field B0

predominate over those oriented anti-parallelly to B0 and therefore they lead to the net
magnetization vector M pointing along the field B0 (see Fig. 2.2a). Note although individ-
ual magnetic moments precess about the field B0, the net magnetization vector M (which
is the vector sum of the individual moments) does not precess. This is because magnetic
moments are not phase-related with each other and therefore they cancel their phases with
each other, when we sum them all up (Hashemi et al. 2012). This net magnetization vector
M can be featured by two components namely longitudinal Mz (along B0) and transverse
Mxy (orthogonal to B0):

M = Mz + Mxy. (2.1)

Now, the second magnetic field (RF pulse) B1
5 is applied perpendicularly to the static

magnetic field B0, i.e., along the x-axis (see Fig. 2.1a). The magnetic moments, which are
aligned with the external magnetic field B0, will start now to precess about the x-axis with
the frequency ω1 = γ |B1| (ω1 � ω0).

Consequently, the net magnetization vector M flips into the perpendicular to B0 plane
(XY plane) in a spiral motion. The flip angle θ of this change depends on the strength and
the duration of the RF pulse (Hashemi et al. 2012). Typically, the flip angle θ is assumed to
be θ = 90◦ leading the net magnetization vector M into the XY plane (see Fig. 2.2b). This
is because the energy from the RF pulse boosts the protons from lower energy state to the
higher energy state and therefore the protons in both states can be equalized (Hashemi et al.
2012). Additionally note that in comparison with the previous state (before the RF pulse),
the magnetic moments tend to line up their phases now. Clearly, if the frequency ω of the RF
pulse matches the Larmor frequency ω0 (i.e., ω = ω0), the resonance occurs. The hydrogen
nuclei absorb the energy and the longitudinal component of the vector M no longer exist.
This process is called excitation.

5While the static magnetic field B0 is strong (e.g., 1.5T, 3T or even 7T), the second magnetic field B1 is
weak (e.g., 50mT).
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(a) (b) (c)

Figure 2.2: The net magnetization vector M in the external static magnetic field B0:
(a) the net magnetization vector M before the RF excitation pulse, (b) the net magneti-
zation vector M during the RF excitation pulse with flip angle θ = 90◦ and frequency ω0,
and (c) the trajectory of the excited magnetization vector M going towards the equilibrium.
The Mz and Mxy are the parallel and perpendicular to the magnetic field B0 components
of M, respectively.

Once the RF pulse is turned off, the net magnetization vector M returns to the initial
state, i.e., before the excitation (see Fig. 2.2c). The protons go back from their high energy
state to the low energy state and they start to get out of the common phase. Consequently,
the value of transverse component Mxy of the magnetization vector M decays in time t

following the equation:

Mxy(t) = M0exp
(
− t

T2

)
, (2.2)

while the value of longitudinal component Mz recovers in time t according to the formula:

Mz(t) = M0

(
1− exp

(
− t

T1

))
(2.3)

with T1 and T2 being longitudinal and transverse relaxation times, respectively (see Fig. 2.3)
and M0 is the initial value of transverse component Mxy.

For the sake of considerations in this chapter, we use the first-order Taylor expansion of
the net magnetization vector M (Ying and Liang 2010):

M0 ≈
γ2h|B0|Ns

4kBTs
, (2.4)

where h is the Planck constant divided by 2π, Ns is the total number of polarized protons
in the object, kB is Boltzmann’s constant and Ts is the absolute temperature of the object.

2.3 Single-coil acquisition

In this section, we provide basic details about image reconstruction in single-coil devices
from a signal processing perspective.

Without going into all the details, the raw MR signal in the k–space domain at the
location k can be modelled using Fourier imaging equation (Sodickson and Manning 1997,
Hoge et al. 2005, Ying and Liang 2010):

s(k) =
∫

FOV
C(r)%(r) exp(−j2πkT r)dr, (2.5)
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Figure 2.3: Comparison of T1 and T2 relaxation time constants in human tissues for B0

magnetic field of 1.5 T (based on McRobbie et al. 2003 and Vymazal 2004).

where s(k) = sre(k)+j ·sim(k) is the acquired complex raw MRI data, r is the vector referring
to the spatial position within the field of view (FOV), C(r) is the coil sensitivity profile at the
location r, %(r) is the excited spin density function throughout the FOV and j2 = −1 is the
unit imaginary number. The first-order Taylor expansion of the net magnetization vector,
M0 (2.4), recently introduced in section 2.2, is proportional to the excited spin density
function %(r) (Ying and Liang 2010):

M0 ∝
∫
%(r)dr. (2.6)

For single-coil devices, the same RF coil is responsible for RF signal excitation and MR
signal acquisition. The sensitivity profile of that receiver coil is relatively homogeneous over
the FOV, i.e., C(r) ≈ 1 (Sodickson and Manning 1997). Therefore, the eq. (2.5) can be
simplified to:

s(k) =
∫

FOV
%(r) exp(−j2πkT r)dr. (2.7)

The goal of the image reconstruction step is to retrieve a spatial representation of the
signal s(k), i.e., the equivalent signal S(x) in the x–space domain (Fig. 2.4). To this end,
the signal s(k) is assumed to be uniformly sampled on a Cartesian grid (Fig. 2.5a) and then
the inverse discrete Fourier transform (DFT) of eq. (2.7) is employed to obtain S(x):

S(x) = F−1{s(k)} = Sre(x) + j · Sim(x), (2.8)

where F−1{·} is the inverse DFT operator, Sre(x) and Sim(x) are real and imaginary parts
of the signal S(x), respectively. In clinical and research scenarios, however, we are partic-
ularly interested in magnitude signal rather than its complex representation. To this end,
the magnitude information can be easily obtained using the absolute value operator of the
complex signal S(x) (2.8) (Henkelman 1985):

M(x) = |S(x)| =
√
S2

re(x) + S2
im(x). (2.9)

The pipeline of the aforementioned data processing is summarized in Fig. 2.4. Note that we
additionally introduced the size of the FOV defined as FOVx×FOVy and the size of a single
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two-dimensional
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k-space data x-space data

magnitude data

Figure 2.4: Image reconstruction pipeline in single-coil devices. The raw MRI data are rep-
resented in k–space domain as a complex image s(k) = sre(k) + j · sim(k) with ∆kx and
∆ky being pixel sizes in frequency and phase encoding direction, respectively. Then, the two-
dimensional inverse DFT operator is applied leading to the x–space domain representation,
S(x) = Sre(x) + j · Sim(x), and finally, the absolute value operator provides the magnitude
image M(x). The parameters FOVx and FOVy determine the size of FOV in frequency
and phase encoding direction, respectively. To make the scheme more readable, we show
log-amplitude image log(|s(k)| + 1) and phase image arctg

(
sim(k)
sre(k)

)
as the k–space domain

representation. The conjugate symmetries of k–space are depicted in log-amplitude image.

pixel given by ∆kx ×∆ky. The size of a single pixel ∆kx ×∆ky is defined to be a reciprocal
of the FOV size, i.e., ∆kx × ∆ky = 1/FOVx × 1/FOVy. These parameters will be used at
further stages of the thesis6.

For practical considerations, however, a fast Fourier transform (FFT) is arranged to re-
trieve the image S(x). Since two-dimensional Fourier transform is linearly separable, multiple
one-dimensional Fourier transforms can be arranged here, i.e., along the rows and then along
the columns of the image s(k). The complexity of multiple FFTs is defined to be O(N2 logN)
rather than O(N4) for two-dimensional DFT. Note that Fourier-based approach requires
Cartesian sampled data in k–space domain. Nevertheless, other than Cartesian sampling
schemes of k–space domain can be employed in the acquisition procedure as well. For this
kind of non-Cartesian sampling the Fourier operator will not work. The reconstruction be-
comes more complicated, since the non-Cartesian measurements must be regridded onto a
rectilinear grid prior to the reconstruction step (see Jackson et al. 1991 and Sedarat and
Nishimura 2000) or a non-uniform FFT scheme must be applied (Fessler and Sutton 2003).

2.4 Multiple-coil acquisition

In multiple-coil MRI acquisition, the raw data are acquired simultaneously using a phased
array system comprised of L receiver coils (Roemer et al. 1990). In comparison to single-coil
devices, the intensity profiles of receiver coils are not uniform across the FOV.

In the analogy to eq. (2.5), the fully-sampled raw data in l-th receiver coil (l = 1, . . . , L)

6Note that we interchangeably use the parameters FOVx and FOVy to denote the size of FOV both in
centimeters and in pixels depending on the context.
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Figure 2.5: The comparison of different coverages of k–space domain: (a) fully sampled
k–space (single-coil and multiple-coil acquisitions), (b) subsampled k–space in phase encod-
ing direction with subsampling rate r = 2 (SENSE) and (c) subsampled k–space in phase
encoding direction with subsampling rate r = 2 and with acquired autocalibration signal
(GRAPPA).

in the k-space domain at the location k can be modelled as (Wang 2000, Hoge et al. 2005):

sl(k) =
∫

FOV
Cl(r)%(r) exp(−j2πkT r)dr, (2.10)

where sl(k) = slre(k) + j · slim(k) is the complex raw MRI data in the Fourier domain at
the location k, Cl(r) is a non-uniform sensitivity profile of l-th receiver coil at r and %(r)
is again the excited spin density function over the FOV. Note that the sensitivity profiles
C1(x), . . . , CL(x) are complementary for each point in the FOV, i.e.,

∧
x∈FOV

L∑
l=1

Cl(x) = const. (2.11)

Since the k–space domain is again sampled on a Cartesian grid (see Fig. 2.5a) and k–space/x–
space domains are related with each other by the Fourier transform, we can rewrite eq. (2.10)
as follows:

sl(k) =
∫

FOV
Cl(x)S(x) exp(−j2πkTx)dx. (2.12)

Then, using a substitution Sl(x) = Cl(x)S(x) we finally have:

sl(k) =
∫
V
Sl(x) exp(−j2πkTx)dx. (2.13)

It is clear now that in multiple-coil systems the image Sl(x) in l-th receiver coil in the
x–space domain can be modelled as the non-weighted target image S(x) multiplied element-
by-element by the sensitivity profile of the receiver coil Cl(x).

Eventually, we apply the inverse DFT to each raw MR image sl(k) (2.13) leading to the
x–space domain representation Sl(x):

Sl(x) = F−1{sl(k)} = Slre(x) + j · Slim(x) for l = 1, . . . , L, (2.14)

where Slre(x) and Slim(x) are real and imaginary parts of the signal Sl(x), respectively. The
general scheme for multiple-coil acquisition is summarized in Fig. 2.6. Note that we still need
a reconstruction algorithm to obtain a single magnitude image from the collections of the
images S1(x), . . . , SL(x). Two such approaches are presented in sections 2.4.1 and 2.4.2.
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Figure 2.6: Image reconstruction scheme in multiple-coil acquisition for four receiver coils
(L = 4). The two-dimensional inverse DFT operator is applied to the raw MRI data from
each receiver coil sl(k) individually to obtain x–space domain representation Sl(x) (2.14).
Then, the final magnitude image is obtained using either a sum of squares (SoS) formula
(2.15) or a spatial matched filter (SMF) approach (2.18–2.19). The SMF approach requires
the sensitivity maps Cl(x) to be estimated (right column presents the artificial sensitivities).
Finally, note although the representations sl(k) and Sl(x) are in complex domain, we provide
the magnitude images only for the sake of the readability of the scheme, i.e., log(|sl(k)|+ 1)
and |Sl(x)|, respectively.

2.4.1 Sum of squares (SoS)

In the most primordial variant, the final composite magnitude signal (CMS) is recovered by
means of sums of squares (SoS) procedure aggregating the data from all receiver coils Sl(x)
(Roemer et al. 1990, Constantinides et al. 1997, Aja-Fernández and Tristán-Vega 2012):

ML(x) =

√√√√ L∑
l=1

|Sl(x)|2 =

√√√√ L∑
l=1

(
S2
lre

(x) + S2
lim

(x)
)
. (2.15)

The key advantage of this simple approach is that it does not require sensitivity profiles of
the receiver coils Cl(x) to be known in the reconstruction process.

2.4.2 Spatial matched filter (SMF)

The spatial matched filter (SMF) is another computational technique, which allows for recon-
structing the final magnitude image in the x–space domain from the data S1(x), . . . , SL(x)
(Roemer et al. 1990). The method was shown to produce the image with a maximized SNR
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Figure 2.7: The comparison of different image reconstruction schemes in MRI acquisitions:
(a) single-coil, (b) multiple-coil, (c) SENSE and (d) GRAPPA.

level, and additionally it enables to take the correlations between receiver coils into account
(Walsh et al. 2000). Note that in comparison to SoS, the SMF method requires the sensitivity
coils Cl(x) to be known or at least to be estimated.

The SMF linearly combines the complex data from all receiver coils Sl(x) weighted by
the sensitivity profiles Cl(x) to retrieve the image S(x). The acquired data Sl(x) and the
target image S(x) can be related as follows:

Sl(x) = Cl(x)S(x) for l = 1, . . . , L. (2.16)

The eqs. (2.16) can be rewritten then in a matrix form:

S(x) = C(x)S(x) (2.17)

with S(x) = [S1(x), . . . , SL(x)]T being a L×1 column vector of acquired data at the location
x and C(x) = [C1(x), . . . , CL(x)]T is a L× 1 column vector of sensitivities of receiver coils.
Since we have an overdetermined system of equations (more equations than variables), we
resort to the minimization procedure of

∥∥S(x) − C(x)S(x)
∥∥2

2 with
∥∥ · ∥∥2 being the 2-norm

(Trefethen and Bau III 1997). This can be solved using the ordinary least squares (OLS)
formula under Gaussian noise assumptions (Kay 1993):

Ŝ(x) = (C∗(x)C(x))−1 C∗(x)S(x), (2.18)

where C∗(x) is the conjugate transpose of the matrix C(x). Eventually, the magnitude image

M(x) is obtained using the absolute value operator of Ŝ(x) = Ŝre(x) + j · Ŝim(x):

M(x) = |Ŝ(x)| =
√
Ŝ2

re(x) + Ŝ2
im(x). (2.19)
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Some remarks are worth being made about the SMF method:

1. The algebraic solution (2.18) requires the matrix C∗(x)C(x) to be invertible.

2. The estimation procedure (2.18) must be performed for each point of the FOV indi-
vidually, which might be computationally intensive for large number of receiver coils,
e.g., L ­ 64.

3. The sensitivity maps C1(x), . . . , CL(x) must be estimated from the data itself or using
an additional pre-scan (see e.g., Ling et al. 2014).

4. Finally, since the correlation between receiver coils affect the data as it was demon-
strated by Aja-Fernández and Tristán-Vega 2012, the weighted least squares (WLS)
formula can be arranged instead of OLS (2.18) (Kay 1993):

Ŝ(x) =
(
C∗(x)Σ−1C(x)

)−1
C∗(x)Σ−1S(x), (2.20)

where Σ is the positive definite covariance matrix.

2.5 Accelerated parallel MRI

In this section, we present accelerated parallel MRI techniques with a particular attention
to SENSE and GRAPPA. These two techniques collect the MR signal not only in a parallel
fashion, but they also subsample raw data in the k–space domain usually in phase encoding
direction (see Fig. 2.5b, c and Fig. 2.7). The fundamental differences between SENSE and
GRAPPA are the following:

• SENSE – applies inverse DFT operator to each subsampled k–space raw image individ-
ually, and then, it reconstructs the final image from x–space equivalents (reconstruction
in x–space domain),

• GRAPPA – reconstructs images in k–space domain from subsampled k–space raw
images, and then, it applies the inverse DFT operator to each reconstructed image
individually (reconstruction in k–space domain).

Our attention in this thesis is particularly held on SENSE and GRAPPA imaging, and it
arises directly from a distinctive MRI community interest in these modalities. Over the last
decade, SENSE and GRAPPA reconstructions became de facto standard in most accelerated
parallel MRI acquisitons7. Up till now, multifarious SENSE-derived and GRAPPA-derived
imaging techniques confirm their serviceableness and wide clinical applicability including
functional MRI (fMRI) analysis (Moeller et al. 2010), high-resolution diffusion tensor imag-
ing (DTI) (Heidemann et al. 2012, Jeong et al. 2013) and real-time cardiac imaging (Feng
et al. 2013). Although new modifications of SENSE and GRAPPA are still emerging in the
literature (see some recent advances in this field in Aja-Fernández et al. 2015a and Muckley
et al. 2015), the meticulous details and differences between them are beyond the scope of
this thesis. Nevertheless, we refer the reader to the papers by Hoge and Brooks 2006 and
Uecker et al. 2014, which clarify the relations and complementarities between SENSE and
GRAPPA.

7The MRI vendors commonly provide their own modifications of SENSE and GRAPPA algorithms (Brau
2007, PhilipsHealthcare 2012). For instance, the SENSE algorithm is implemented in MRI scanners from
Philips Healthcare (called dS-SENSE), Siemens Healthcare (mSENSE – modified SENSE) and General Elec-
tric Healthcare (ASSET – Array Spatial Sensitivity Encoding Technique), while GRAPPA is used by General
Electric Healthcare (ARC – Autocalibrating Reconstruction for Cartesian imaging) and Siemens Healthcare.
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2.5.1 SENSitivity Encoding (SENSE)

In this section, we present SENSE imaging algorithm in Cartesian coordinates usually re-
ferred as Cartesian SENSE. In SENSE method, the k–space domain is typically subsampled
in phase encoding direction. The subsampling in k–space domain causes aliasing artifacts
in spatial domain of the image along the subsampled direction (Pruessmann et al. 1999,
Aja-Fernández et al. 2014a) (see Fig. 2.7c). The SENSE algorithm corrects these artifacts
providing a full FOV image, which aggregates the information from all receiver coils (with
reduced FOVs) and sensitivity profiles.

Let us assume now that sSl (k) is the subsampled signal (2.10) in phase encoding direction
given the subsampling rate r (1 < r < L). The inverse DFT-reconstructed equivalent SSl (x)
in the x–space domain (with reduced FOV) at the location x = (x, y) is represented then as
follows (Blaimer et al. 2004, Larkman and Nunes 2007):

SSl (x, y) =
r∑
i=1

Cl (x, yi)SR (x, yi) for l = 1, . . . , L, (2.21)
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Figure 2.8: The graphical explanation of Cartesian SENSE reconstruction procedure using
four receiver coils (L = 4) and the subsampling rate r = 2. Subsampling in phase encoding
direction decreases the FOV size FOVy by two and additionally it causes aliasing artifacts
in the subsampled direction in the x–space domain images SSl (x, y). Two red pixels of the
reconstructed image SR(x, y) are unfolded using coil sensitivity profiles Cl(x, y) (the points
are marked using orange, green, blue and purple, respectively) and the corresponding folded
pixels SSl (x, y). For the sake of readability of the figure, we used the coordinates (x, y) instead
of (x, y1) (assume i = 1 in eq. (2.22)). Note that the subsampled x–space domain images
SSl (x, y) and the reconstructed image SR(x, y) are complex images rather than scalar as it
is shown in this scheme.



2.5. Accelerated parallel MRI 27

where SR(x, y1), . . . , SR(x, yr) are the pixels of the full FOV image to be reconstructed and
(x, yi) are the coordinates of the unfolded pixels with yi given by:

yi = y +
FOVy

r
(i− 1) for i = 1, . . . , r (2.22)

with FOVy being the size of FOV (in pixels) of the reconstructed image SR(x) in phase
encoding direction. A graphical interpretation of Cartesian SENSE using four receiver coils
(L = 4) and the subsampling ratio r = 2 is depicted in Fig. 2.8.

The eqs. (2.21) can be rewritten then in a matrix form:

SS(x) = C(x)SR(x) (2.23)

with SS(x) =
[
SS1 (x, y), . . . , SSL(x, y)

]T
being a L× 1 column vector of the acquired data at

the location x = (x, y), SR(x) =
[
SR(x, y1), . . . , SR(x, yr)

]T
is a r × 1 column vector repre-

senting the pixels from full FOV image to be reconstructed at the locations (x, y1), . . . , (x, yr)
and C(x) is a L × r matrix representing the sensitivities of receiver coils at the locations
(x, y1), . . . , (x, yr):

C(x) =


C1 (x, y1) C1 (x, y2) . . . C1 (x, yr)

C2 (x, y1) C2 (x, y2) . . . C2 (x, yr)
...

...
. . .

...

CL (x, y1) CL (x, y2) . . . CL (x, yr)

 . (2.24)

Since we have an overdetermined system, we again resort to WLS procedure under Gaus-
sian noise assumptions (Kay 1993, Pruessmann et al. 1999, Aja-Fernández et al. 2014a):

ŜR(x) =
(
C∗(x)Σ−1C(x)

)−1
C∗(x)Σ−1SS(x), (2.25)

where ŜR(x) =
[

̂SR(x, y1), . . . , ̂SR(x, yr)
]T

, C∗(x) is the conjugate transpose of the matrix
C(x) and Σ is the positive definite covariance matrix of size L×L defining the correlations
between receiver coils (Pruessmann et al. 1999, Aja-Fernández et al. 2014a). Finally, the
magnitude image M(x) is recovered using the absolute value operator of the reconstructed

image ŜR(x):

M(x) = |ŜR(x)|. (2.26)

Although the estimator (2.25) gives the implicit formula for SR(x), it can lead to nu-
merical instabilities due to the inherent noise component in the data SSl (x) and a bias in
estimated coil sensitivity profiles Cl(x). Such instabilities can usually be observed for higher
values of subsampling rate r at the center of the FOV and especially for low magnetic fields
B0. Exemplary distortions in the final magnitude image M(x), which was obtained with
SENSE algorithm and Turbo Spin Echo (TSE) sequence, are shown in Fig. 2.9.

To improve the results of this ill-conditioned problem some regularization techniques
have been proposed (Ying et al. 2004, Liu et al. 2009, Liang et al. 2011, Chaâri et al. 2011).
Generally, these regularizations consider the estimation of SR(x) as a minimization procedure
and additionally they take a penalization term in the minimization functional into account:

ŜR(x) = argmin
SR(x)

∥∥SS(x)−C(x)SR(x)
∥∥2

2 + κ
∥∥A(SR(x)− SRr (x))

∥∥2
2, (2.27)

where κ ∈ R+ is the regularization parameter to balance the trade-off between the data
fidelity term and the penalty (regularization) term, A is a positive semidefinite matrix



2.5. Accelerated parallel MRI 28

(a) (b) (c)

Figure 2.9: The SENSE reconstruction procedure for T2-weighted TSE sequence with L = 32
and different subsampling rates r: (a) no subsampling, (b) r = 2 and (c) r = 4. The white
arrows indicate the artifacts, which are the consequences of numerical instabilities of SENSE
algorithm.

and SRr (x) is the prior information about the solution. The parameter κ is usually set
heuristically or automatically using the L-curve method (Liu et al. 2009). The regularization
methods need a fast convex optimization algorithm to obtain the estimate (2.27), though,
the Tikhonov regularization can be expressed in a closed-form formula (Ying et al. 2004).

Finally, some remarks about SENSE are worth making:

1. For Cartesian SENSE, the matrix C∗(x)Σ−1C(x) in eq. (2.25) must be nonsingular.

2. Sensitivity profiles of the coils Cl(x) must be identified in order to estimate the full FOV
image. They can be obtained from a reference low-resolution pre-scan using a body coil
(Pruessmann et al. 1999) or jointly with the image SR(x) in the estimation procedure
(Ying and Sheng 2007). Note, however, that the estimation of the sensitivity profiles
becomes a challanging problem especially for abdominal imaging, where a low spin
density regions affect the estimation accuracy.

3. Presented SENSE algorithm is also called one-dimensional SENSE (1D-SENSE) as
opposed to two-dimensional (2D-SENSE) (Weiger et al. 2002), where the subsampling
is performed over two phase-encoding directions of three-dimensional (3D) MRI data.

4. The SENSE reconstruction method has evolved towards different sampling trajectories
of the MR signal in the k–space domain (Pruessmann et al. 2001, Wright et al. 2014)
and the powerful mathematical concept called compressive sensing, which takes the
advantage of the sparsity of the MR signal (Lustig et al. 2007, Feng et al. 2013). This
enables to obtain great results, when recovering the full FOV image, however, the
schemes are usually computationally intensive.

2.5.2 GeneRalized Autocalibrating Partially Parallel Acquisition
(GRAPPA)

In GRAPPA imaging, the reconstruction process takes place in the k–space domain. However,
note that additional low-frequency lines sampled at Nyquist rate in the center of the k–space
domain are acquired as it is shown in Fig. 2.5c. We call these lines auto calibration signal
(ACS), since it allows to calibrate (identify) the reconstruction parameters used in GRAPPA.
Contrary to SENSE imaging, where the size of the FOV in phase encoding direction is reduced
by the factor r (i.e., FOVy/2), here, the missing lines are filled with zeros providing the full
FOV image in the k–space domain (see Fig. 2.7d).
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Figure 2.10: The GRAPPA reconstruction scheme for four receiver coils (L = 4) and 3 × 3
local neighbourhoods η(k). The reconstruction of a single missing point in the first receiver
coil sR1 (k) (a green dot with a circle) involves a linear combination of the sampled points from
local neighbourhoods from all receiver coils sSk (k − p) with corresponding weights ωk1(p).
The scheme is repeated over all missing points in the k–space domain and then over all
receiver coils (k = 1, . . . , L).

Let us assume again that sSl (k) is the subsampled signal (2.10) in phase encoding direction
given the subsampling rate r (1 < r < L). In GRAPPA algorithm, the signal sSl (k) remains
untouched, while the missing data sRl (k) are reconstructed using a linear combination of
neighbouring points along all receiver coils (Griswold et al. 2002, Aja-Fernández et al. 2015a,
Fig. 2.10):

sRl (k) =
L∑
k=1

∑
p∈η(k)

sSk (k− p)ωkl(p), (2.28)

where sRl (k) is the reconstructed point in l-th receiver coil at the location k, η(k) is a local
neighbourhood centered at k and ωkl(p) is a (complex) weight being a contribution of the
acquired sample sSk (k− p) from k-th receiver coil to sRl (k). The eq. (2.28) can be rewritten
then using a sum of convolution operators (Breuer et al. 2009):

sRl (k) =
L∑
k=1

sSk (k)~ wkl(k), (2.29)

where wkl(k) is a GRAPPA convolution kernel, which is built upon the coefficients ωkl(k).
Using the convolution theorem, which states that a circular convolution in Fourier domain
is equivalent to element-by-element multiplication in spatial domain of the signal, we can
further rewrite eq. (2.29) as follows:

SRl (x) = FOVx · FOVy

L∑
k=1

SSk (x)�Wkl(x), (2.30)

where the symbol “�” denotes the Hadamard product of two matrices (i.e., element-by-
element multiplication), SSk (x) is the x–space equivalent to sSk (k) and Wkl(x) is the full
FOV inverse DFT corresponding to wkl(k).

The magnitude image from (2.30) can be obtained using both SoS (2.15) and SMF
(2.18–2.19), though, the SoS is used in the orginal implementation of GRAPPA (Griswold
et al. 2002). To apply GRAPPA method, however, we still need GRAPPA coefficients ωkl(p)
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specified in (2.28). These coefficients can be obtained using the OLS procedure:

L∑
k=1

SACSk (kx, ky − l∆ky) =
L∑
k=1

ωklS
S
k (kx, ky), (2.31)

where (kx, ky) is the position in the k–space (i.e., k = (kx, ky)), SACSk (x) are the ACS lines
and ωkl is a GRAPPA weight for k-th receiver coil while recovering the missing data in l-th
coil (see Fig. 2.10).

Recently, the conventional GRAPPA algorithm was extended towards a non-linear
reconstruction (Chang et al. 2012). The method maps the sampled data sSl (k) onto a high
dimensional feature space and therefore it applies the OLS principle to obtain GRAPPA
coefficients ωkl. This procedure can be seen as an extension of the phased array matrix to
many additional virtual channels. Latterly, Aja-Fernández et al. 2015a shown that conven-
tional GRAPPA can be significantly improved with almost no additional computational cost
by a frequency discrimination in the ACS lines. Specifically, the low-frequency areas of the
ACS lines are excluded from the estimation process of the weights ωkl, since their inclusion
along with a direct current component may lead to biased weights.

Eventually, some remarks about GRAPPA method are worth making:

1. The formula (2.30) is correct for non-stochastic weights ωkl(p) only.

2. The conventional GRAPPA method was generalized also to the 3D MRI data under-
sampled in two phase-encoding directions (Blaimer et al. 2006).

3. The GRAPPA method does not require the sensitivity maps to be estimated. The ACS
lines are still required whether a linear or a non-linear combination of the neighbour-
hoods are used to retrieve the signal sRl (k) (2.28).

2.5.3 Other accelerated parallel MRI reconstruction algorithms

In previous two sections, we limited ourselves to present two most crucial accelerated parallel
MRI techniques used in clinical and research scenarios, i.e., SENSE and GRAPPA. Certainly,
many other approaches were also proposed in the literature like SMASH (SiMultaneous
Acquisition of Spatial Harmonics) (Sodickson and Manning 1997), SPACE RIP (Sensitivity
Profiles From an Array of Coils for Encoding and Reconstruction in Parallel) (Kyriakos et al.
2000) or PROBER (Parallel MRI Reconstruction using B-spline Approximation) (Petr et al.
2007), however, mostly, they are not so relevant as SENSE and GRAPPA. This is because
they generate spatial images with artifacts or low SNR parameter of the data (Blaimer
et al. 2004). Another aspect of the algorithms is lack of flexibility to extend them towards
a non-Cartesian sampling of the k–space domain or exploit the sparsity of the MR signal.

On the other hand, recent advances in this field like SPIRiT (iTerative Self-consistent
Parallel Imaging Reconstruction) (Uecker et al. 2014), ALOHA (Annihilating filter based
LOw-rank Hankel matrix Approach) (Jin et al. 2015) or RSPIRiT (Robust SPIRiT) (Peng
et al. 2016) enable to significantly improve the results. Nevertheless, they are non-linear
techniques and the statistical models of the magnitude data cannot be derived.

Finally, we focus on one technique called PILS (Partially Parallel Imaging With Localized
Sensitivities) (Griswold et al. 2000). Contrary to SENSE and GRAPPA, the PILS method
assumes that the receiver coils are positioned linearly along the phase encoding direction
and their geometrical positions are a priori known (see Fig. 2.11). Each receiver coil should
have a non-negative sensitivity profile Cl(x) only for a distinct region limited by YCl , while it
should equal zero elsewhere. The method employs the fact that the subimages are periodically
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(a)(II)
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Coil 1 Coil 2 Coil 3 Coil 4

Figure 2.11: The PILS method: (I) sensitivity profiles of the coils Cl(x) positioned along the
phase encoding direction and covering distinct regions of size YCl , (II) periodically repeated
subimages obtained from subsampled data (replicas present every FOVy/2 pixels), (III) the
subimages forming the final image (retrieved using sensitivity profiles Cl(x)) and (IV) the
final magnitude image obtained using the SoS formula (2.15).

repeated along the phase encoding direction and they are separable as long as FOVy/r > YCl ,
where r is the subsampling ratio (see Fig. 2.11 for r = 2). The subimages are extracted
then using element-wise product of sensitivity profiles and the images with replicas. The
magnitude image is obtained using the SoS procedure (2.15).

2.6 Conclusions and remarks

In this chapter, we presented the nuclear magnetic resonance physical phenomenon underlie
magnetic resonance imaging. We introduced the concept of the net magnetization vector
subjected to the time-varying radiofrequency pulse in the external static magnetic field. The
changes of net magnetization vector in hydrogen nucleus during the excitation and relaxation
phenomena finally lead to the magnetic resonance signal.

The rest part of the chapter is devoted to the explanation of image reconstruction algo-
rithms used in single-coil, multiple-coil and accelerated parallel MRI acquisitions especially
SENSE and GRAPPA. Although the chapter is the review over various reconstruction meth-
ods, it will be convenient for the reader, while studying the statistical models of the magnitude
MRI data.

Figure 2.12: Comparison of acquisition times for different variants of MR imaging: no accel-
eration, SENSE and dS-SENSE (adapted from PhilipsHealthcare 2012).
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One can ask if the accelerated parallel MRI technique really accelerates the
acquisition? Actually, it does. However, due to different factors like the calibration
procedure of the device or a low-resolution pre-scan the subsampling rate r does not lead to
have r times faster acquisition process than the single-coil acquisition. This is depicted in
Fig. 2.12, where various procedures are needed, whether we use a single-coil or accelerated
parallel MRI acquisition. An exemplary scan times of human brain8 for different acquisitions
using Philips Achieva 3.0T TX device provided with a 32-channel coil system (Philips
Medical Systems, Best, the Netherlands) are included in Table 2.1. However, note that we
used dS-SENSE accelerated parallel MRI method, which is the brand product of Philips
Healthcare. Finally, note that some recent advances in parallel imaging especially for CINE
cardiac imaging (e.g., Royuela-Del-Val et al. 2016) enable to subsample the k–space domain
using even the acceleration rate of r = 12. In Table 2.2, we compared SENSE and GRAPPA
accelerated parallel MRI reconstructions schemes presented in this chapter.

Some general remarks about accelerated parallel MRI techniques:

1. SENSE and GRAPPA as opposed to PILS do not require spatially localization of the
receiver coils. They can be applied for a coil array both with a linear and a circularly
symmetric geometry.

2. Accelerated parallel MRI techniques are not always used to accelerate the acquisition.
In fMRI with Echo Planar Imaging (EPI) sequence, for instance, they can be arranged
to acquire higher resolution data at the expense of time reduction (Chaâri et al. 2011).

Table 2.1: Comparison of the examination times in minutes for various acquisitions with dS-
SENSE using Philips Achieva 3.0T TX device (Philips Medical Systems, Best, the Nether-
lands) with respect to subsampling rate r, Echo Time (TE) and Repetition Echo (TR) of
the sequence.

Imaging Sequence parameters Slices No subsampling r = 2 r = 4

T1-weighted TE=3.7 ms, TR=7.5 ms 54 03:25.9 01:52.9 0:55.9

T2-weighted TE=80 ms, TR=3000 ms 50 06:36.0 03:24.0 01:48.0

T2∗-weighted TE=16 ms, TR=553 ms 50 04:41.2 02:25.1 01:14.2

Table 2.2: Comparison of SENSE and GRAPPA reconstruction techniques.

Method
Reconstruction Additional parameters required

domain to reconstruct the data

SENSE x–space sensitivity profiles Cl(x)

GRAPPA k–space ACS lines SACSl (x), reconstruction coefficients ωkl(k)

8Actually, it the author’s brain.
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3.1 Introduction

In this chapter, we present basic information about the underlying noise in MRI. We intro-
duce various statistical models employed to represent the noise both in k–space and x–space
domains. We are particularly interested in non-stationary Rician and on-stationary noncen-
tral Chi distributed noise since they appear in magnitude data obtained with accelerated
parallel MRI techniques. Nevertheless, we start the chapter with the simplest model used in
single-coil acquisitions, and then we generalize it to support more advanced concepts.

3.2 Noise in MRI

The variance of the fluctuating noise voltage is proportional to the resistive impedance of
the receiver coil and it is defined as follows (Brown et al. 2014; Chapter 15):

σ2
thermal ∝ 4kBTsReffBW , (3.1)

where σ2
thermal is the variance of the noise voltage, kB is Boltzmann’s constant, Ts is the

absolute temperature of the resistor, Reff is the effective resistance of the coil, and BW is the
bandwidth of the noise-voltage detecting system.

The thermal noise affects the raw data in k–space domain and then the noise is propagated
to magnitude MRI data according to the reconstruction pipeline. We will explain now how
the noise affects the magnitude MRI data assuming different acqusition schemes including
single-coil, multiple-coil and accelerated parallel MRI.

3.3 Data distributions in MRI

The noise component in the k–space domain in a single-coil of the MRI device is assumed to
be Gaussian distributed and it has approximately constant variance over the domain (Henkel-
man 1985, McVeigh et al. 1985). The noise is then pro rata transformed to the x–space domain
preserving the Gaussianity due to linearity property of the DFT operator (Henkelman 1985,
Aja-Fernández et al. 2009). A statistical distribution of the noise in final magnitude MR
signal and its stationarity over the FOV, however, strictly depends on the acquisition system
configuration and image reconstruction algorithm (Gudbjartsson and Patz 1995, Constan-
tinides et al. 1997, Dietrich et al. 2008, Aja-Fernández et al. 2009, Aja-Fernández et al. 2011,
Aja-Fernández and Tristán-Vega 2012, Aja-Fernández and Tristán-Vega 2013, Aja-Fernández
et al. 2014b, den Dekker and Sijbers 2014).

For single-coil systems, the magnitude signalM(x) (2.9) follows a stationary Rician distri-
bution (Gudbjartsson and Patz 1995). In the background areas, due to lack of water proton
density, the Rician distribution reduces to stationary Rayleigh case (Aja-Fernández et al.
2010). For multiple-coil systems, the distribution of the final magnitude signal depends on
employed reconstruction algorithm and correlations between receiver coils. For SoS method
(2.15), the magnitude signal ML(x) follows a noncentral Chi distribution (nc-χ) (Constan-
tinides et al. 1997). However, as it was shown by Aja-Fernández and Tristán-Vega 2012, the
nc-χ model must be corrected using the effective values to take the correlations between the
coils into account. The nc-χ model also simplifies in the background areas of the MR image,
i.e., the central Chi distribution (c-χ) is used instead (Aja-Fernández et al. 2009).

For accelerated parallel MRI acquisitions like SENSE or GRAPPA a situation becomes
more and more complicated. For Cartesian SENSE imaging, the final magnitude data fol-
lows a non-stationary Rician distribution (Aja-Fernández et al. 2014a, Aja-Fernández et al.
2014b), while for Cartesian GRAPPA the magnitude signal obtained with SoS formula can
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be approximated well enough by a non-stationary nc-χ distribution corrected with the effec-
tive values (Aja-Fernández et al. 2011). Note that in comparison to single-coil acquisition,
where the noise level is assumed to be homogeneous across the FOV, in accelerated parallel
MRI, it becomes spatially variant, i.e., it varies across the FOV.

This section is a thorough guide to statistical distributions employed in modelling the
magnitude MRI data for different reconstruction methods including single-coil, multiple-coil
and accelerated parallel MRI imaging.

3.3.1 Single-coil acquisition

The raw noisy MRI data in the k–space domain in single-coil acquisitions can be modelled
using additive white Gaussian noise (AWGN) process (Ying and Liang 2010, Aja-Fernández
et al. 2009, den Dekker and Sijbers 2014):

s(k) = a(k) + n(k; 0, σ2
K), (3.2)

where s(k) is the noisy MR signal, a(k) = are(k) + j · aim(k) is the noise-free MR signal and
n(k; 0, σ2

K) is the complex Gaussian noise component given by:

n(k; 0, σ2
K) = nre(k; 0, σ2

K) + j · nim(k; 0, σ2
K) (3.3)

with nre(k; 0, σ2
K) and nim(k; 0, σ2

K) being real and imaginary parts of n(k; 0, σ2
K), respectively.

These two components of (3.3) are Gaussian distributed with the expectation value zero and
constant variance σ2

K across the k–space domain. Formally, we define the components of (3.3)
as follows:

nre(k; 0, σ2
K), nim(k; 0, σ2

K) ∼ N (0, σ2
K). (3.4)

The raw k–space data (3.2) is now transformed to the x–space domain using inverse DFT
operator (2.8). Since the inverse Fourier transform is a linear operator, the x–space domain
equivalent to (3.2) is also AWGN process:

S(x) = A(x) +N(x; 0, σ2
X ) (3.5)

with S(x) being the noisy MR signal, A(x) = Are(x) + j · Aim(x) being the noise-free MR
signal, and N(x; 0, σ2

X ) is the complex Gaussian noise component:

N(x; 0, σ2
X ) = Nre(x; 0, σ2

X ) + j ·Nim(x; 0, σ2
X ), (3.6)

where Nre(x; 0, σ2
X ), Nim(x; 0, σ2

X ) ∼ N (0, σ2
X ). The relation between the variance in k–space

and x–space domains is given by the equation (Ying and Liang 2010, Aja-Fernández et al.
2014a):

σ2
X =

1
FOVx · FOVy

σ2
K, (3.7)

where FOVx ·FOVy is the number of pixels in FOV used to calculate the inverse DFT. Now,
the data must be reconstructed using the absolute value operator of (3.5). We rewrite the
eq. (3.5) in a complex form employing the noise component (3.6):

S(x) = Are(x) +Nre(x; 0, σ2
X ) + j · (Aim(x) +Nim(x; 0, σ2

X )). (3.8)

Finally, the magnitude image M(x) is obtained using the absolute operator of (3.8):

M(x) =
√(

Are(x) +Nre(x; 0, σ2
X )
)2 +

(
Aim(x) +Nim(x; 0, σ2

X )
)2
. (3.9)
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Figure 3.1: Probability density functions of (a) Rician distribution (3.10) and (b) Rayleigh
distribution (3.19) for different configuration of distributional parameters. For Rician distri-
bution the parameter σ is set to σ = 1.

The magnitude MRI data M = M(x) (3.9) follows a stationary Rician distribution with
a probability density function (PDF) given by (Rice 1944, Gudbjartsson and Patz 1995;
see Fig. 3.1a):

p(M |AT , σ) =
M

σ2 exp

(
−M

2 +A2
T

2σ2

)
I0

(
ATM

σ2

)
, M ­ 0, (3.10)

where AT = AT (x) =
√
A2

re(x) +A2
im(x) is the envelope of the amplitude signal, σ2 = σ2

X is
the underlying noise variance in the x–space domain (σ2 is assumed to be constant across
the FOV), and I0(·) is the modified Bessel function of the first kind and zeroth order defined
as follows (Zwillinger 2014):

I0(x) =
∞∑
n=0

(
1
4x

2
)n

(n!)2 , x ∈ R+ ∪ {0}. (3.11)

We can define now the r–th raw moment for Rician distributed random variable (RV) M ,
i.e., M ∼ Rice(AT , σ):

E {M r} =
∫ ∞

0
M rp(M |AT , σ)dM, (3.12)

which becomes then (Sijbers et al. 1998):

E {M r} =
(
2σ2

) r
2 Γ

(
1 +

r

2

)
1F1

(
−r

2
; 1;−A

2
T

2σ2

)
, (3.13)

where Γ(·) is the gamma function1:

Γ(t) =
∫ ∞

0
xt−1e−x dx (3.14)

and 1F1(·; ·; ·) denotes the confluent hypergeometric function of the first kind:

1F1 (a; b;x) =
∞∑
n=0

(a)n
(b)n

xn

n!
(3.15)

1The gamma function reduces to Γ(n) = (n− 1)! for positive integer n.
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Figure 3.2: Signal-dependency of the variance operator of the underlying amplitude AT for
(a) Rician and (b) nc-χ distribution with σ = 1.

with Pochhammer symbol (α)n defined as follows:

(α)n =
Γ(α+ n)

Γ(α)
=

n−1∏
i=0

(α+ i). (3.16)

From eq. (3.12) we can define the expectation operator E {M} and the variance Var{M}
of Rician distributed RV M (den Dekker and Sijbers 2014):

E {M} = σ

√
π

2 1F1

(
−1

2
; 1;−A

2
T

2σ2

)
, (3.17)

Var{M} = A2
T + 2σ2 − πσ2

2 1F
2
1

(
−1

2
; 1;−A

2
T

2σ2

)
. (3.18)

The variance in Rician distribution is signal-dependent contrary to Gaussian distribution,
where the variance is signal-independent parameter. This means that the variance Var{M}
strongly depends on the underlying signal amplitude AT (see Fig. 3.2a). Additionally, note
that even-order raw moments in Rician distribution have closed-form analytical solutions as
it was shown and effectively used to obtain a linear minimum mean square error (LMMSE)
estimator for Rician RV in the milestone paper by Aja-Fernández et al. 2008. The Rician
distribution reduces to Rayleigh distribution for AT = 0 (Aja-Fernández et al. 2010). The
PDF of Rayleigh distributed RV M is given then by (see Fig. 3.1b):

p(M |σ) =
M

σ2 exp

(
−M

2

2σ2

)
, M ­ 0. (3.19)

Both PDFs are defined for non-negative variable M only, i.e., M ­ 0. To have no doubts:
the Rician distribution is used to model the magnitude MRI data in the foreground regions
of the image, while the Rayleigh distribution is employed to describe the background areas
with lack of water proton density. Finally, since dealing with Rician distribution becomes
computationally intensive, a simplification for higher SNR (SNR = AT /σ) was proposed by
Gudbjartsson and Patz 1995:

p(M |AT , σ) ≈ 1√
2πσ2

exp

−(M −
√
A2
T + σ2)2

2σ2

 . (3.20)
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3.3.2 Multiple-coil acquisition

In multiple-coil systems, the noise is processed in a similar fashion to single-coil acquisitions.
In what follows, we assume that the raw signal in l–th receiver coil in the k–space domain
can be modelled again as the AWGN process (Aja-Fernández et al. 2009, Aja-Fernández and
Tristán-Vega 2012):

sl(k) = al(k) + nl(k; 0, σ2
Kl), l = 1, . . . , L (3.21)

with sl(k) being a noisy MR signal, al(k) is the noise-free MR signal and nl(k; 0, σ2
Kl) =

nlre(k; 0, σ2
Kl)+j ·nlim(k; 0, σ2

Kl) is the complex Gaussian noise component (all in l–th receiver
coil). After the inverse DFT applied to each signal sl(k) individually, the additivity and
Gaussianity of the noise is still preserved:

Sl(x) = Al(x) +Nl(x; 0, σ2
Xl) (3.22)

with Sl(x) being the noisy MR signal, Al(x) = Alre(x) + j · Alim(x) being the noise-free
MR signal, and Nl(x; 0, σ2

Xl) = Nlre(x; 0, σ2
Xl) + j · Nlim(x; 0, σ2

Xl) is the complex Gaussian
noise component (all in l–th receiver coil). The relation between the variance in k–space and
x–space domains, which is given by the equation (3.7) also holds for multiple-coil acquisition.

While the noise component Nl(x; 0, σ2
Xl) is spatially independent and identically dis-

tributed (i.i.d.) over the x–space domain like in a single-coil acquisition, it becomes corre-
lated between the receiver coils. These correlations are defined in the covariance matrix Σ
(Aja-Fernández and Tristán-Vega 2012):

Σ =


σ2

1 σ12 . . . σ1L

σ21 σ2
2 . . . σ2L

...
...

. . .
...

σL1 σL2 . . . σ2
L

 , (3.23)

where σkl = ρklσkσl with ρkl being the coefficient of correlation between k–th and l–th
receiver coil and σ2

l = σ2
Xl is the noise variance in l–th receiver coil. The correlations between

receiver coils included in the covariance matrix (3.23) can be obtained using an acquisition
without the RF pulse B1, and then calculated as follows (Chaâri et al. 2011):

σkl =
1

FOVx · FOVy

∑
p∈FOV

Sk(p)S∗l (p), for l, k = 1, . . . , L. (3.24)

Note that if the correlations between the receiver coils are assumed to be zero for all k 6= l

and the noise variances are the same for all coils (i.e., σ2
k = σ2

l for k 6= l), the covariance
matrix (3.23) is simply given by Σ = σ2I.

Sum of squares
In SoS reconstruction, the final magnitude image ML(x) is obtained using the formula
(2.15). The combination of squared Gaussian RVs is defined then by the nc-χ distribution
with a PDF given by (Aja-Fernández and Tristán-Vega 2012; see Fig. 3.3a):

p(ML|AT , σ, L) =
A1−L
T

σ2 ML
L exp

(
−M

2
L +A2

T

2σ2

)
IL−1

(
ATML

σ2

)
, ML ­ 0, (3.25)

where ML = ML(x) is the CMS (2.15), σ2
l = σ2 is the underlying noise variance (the same

variance for all channels), L is the number of receiver coils, AT = AT (x) is the noise-free
signal given now by:

AT (x) =

√√√√ L∑
l=1

|Al(x)|2 (3.26)
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Figure 3.3: Probability density functions of (a) nc-χ distribution (3.25) and (b) c-χ distri-
bution (3.30) for different values of the parameter L. Other distributional parameters are:
(a) AT = 3, σ = 1 and (b) σ = 1.

and Ik(·) is the modified Bessel function of the first kind and k–th order (Zwillinger 2014):

Ik(x) =
(

1
2
x

)k ∞∑
n=0

(
1
4x

2
)n

n!(k + n)!
, x ∈ R+ ∪ {0}. (3.27)

The expectation operator E {ML} and the variance Var {ML} of nc-χ distributed RV ML

are defined respectively as:

E {ML} = σ
√

2
Γ
(
L+ 1

2

)
Γ(L) 1F1

(
−1

2
;L;−A

2
T

2σ2

)
, (3.28)

Var{ML} = A2
T + 2Lσ2 − 2σ2

Γ
(
L+ 1

2

)
Γ(L)

2

1F
2
1

(
−1

2
;L;−A

2
T

2σ2

)
. (3.29)

The variance for nc-χ distributed RV is also in the functional dependence of the underlying
signal amplitude AT (see Fig. 3.2b). Again, we refer to the variance (3.29) to be a signal-
dependent parameter.

The nc-χ distribution with the PDF (3.25) reduces to c-χ distribution in the background
areas, i.e., for AT = 0 (Fig. 3.3b):

p(ML|σ, L) =
21−L

(L− 1)!
M2L−1
L

σ2L exp

(
−M

2
L

2σ2

)
, ML ­ 0. (3.30)

However, the nc-χ model is biased, when the underlying data sl(k) are affected by non-
zero correlations between the channels, i.e., Σ 6= σ2I. To still use the nc-χ model, Aja-
Fernández and Tristán-Vega 2012 introduced effective parameters, which substitute the orig-
inal values L and σ (see Fig. 3.4):

1. the effective (decreased) number of receiver coils Leff:

Leff(x) =
A2
T (x)tr(Σ) + (tr(Σ))2

A∗(x)ΣA(x) + ‖Σ‖2F
, (3.31)
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Figure 3.4: Effective parameters for (I) multiple-coil and (II) accelerated parallel GRAPPA
MRI acquisition: (a) Leff(x), (b) σ2

eff(x) and (c) Leff(x)σ2
eff(x). The image reconstruction

parameters are: L = 8, σ2 = 100, ρ = 0.1 and r = 2 (GRAPPA only).

2. the effective (increased) variance of noise σ2
eff:

σ2
eff(x) =

tr(Σ)
Leff(x)

, (3.32)

where Σ is the covariance matrix (3.23), tr(·) is the trace of a matrix, A∗ is a conjugate vector
obtained from A = [A1(x), . . . , AL(x)]T and ‖Σ‖F is the Frobenius norm of the matrix Σ
given by:

‖Σ‖F =

√√√√ L∑
l=1

L∑
k=1

|σkl|2. (3.33)

Note that the corrections (3.31) and (3.32) are position dependent (i.e., σ2
eff = σ2

eff(x) and
Leff = Leff(x)) and they must be tuned for each point of the image individually (see Aja-
Fernández et al. 2013). Furthermore, element-by-element multiplication of these parameters
is constant across the FOV, i.e., Leff(x)σ2

eff(x) = const (Fig. 3.4).

3.3.3 Accelerated parallel MRI acquisition (SENSE)

In accelerated parallel SENSE MR imaging, the noise component in the subsampled k–space
raw data sSl (k) is also assumed to be a stationary complex AWGN process. However, the
relation between the variance in the k–space and x–space domain is now given by the formula
(Aja-Fernández et al. 2014a):

σ2
Xl =

r

FOVx · FOVy
σ2
Kl for l = 1, . . . , L (3.34)

with r being the subsampling rate. The relation (3.34) means that the noise is amplified in
the x–space domain and this intensification merely depends on the subsampling rate r.

The noise component NR(x;σ2
R(x)) in the reconstructed (complex) image SR(x) (2.25)

becomes spatially variant over the FOV, i.e., a non-stationary complex AWGN process (Aja-
Fernández et al. 2014a, Aja-Fernández et al. 2014b):

SR(x) = AR(x) +NR(x; 0, σ2
R(x)), (3.35)

where AR(x) is the noise-free amplitude. The Gaussianity of the signal (3.35) comes from the
reconstruction step (2.25), i.e., the linear combination of Gaussian distributed signals SSl .
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Figure 3.5: The spatially variant noise maps for accelerated parallel SENSE MRI (top row)
and GRAPPA MRI with SoS (bottom row) for different correlation ratio between receiver
coils: (a) ρ = 0, (b) ρ = 0.1, (c) ρ = 0.2, (d) ρ = 0.3 and (e) ρ = 0.4. The parameters of the
reconstructions are: L = 8, r = 2 and σ2 = 100.

The non-stationarity of the noise in eq. (3.35) arises at the reconstruction stage and it merely
depends on correlations between receiver coils comprised in the matrix Σ. Furthermore, the
greater correlations are, the higher the level of the noise in the reconstructed image and
the variability of the map are observed (see Fig. 3.5). In SENSE MR imaging, there also
exist spatial correlations between adjacent lines used in the unfolding process of the signal
SR(x), i.e., the sample SR(x, yi) is correlated with the remaining samples SR(x, yj) for i 6= j

(Aja-Fernández et al. 2014b).
The final magnitude image M(x) is recovered by the absolute value of the signal (3.35)

as it was presented in section 2.5.1:

M(x) = |SR(x)|. (3.36)

The magnitude data (3.36) follows now a non-stationary Rician distribution with the under-
lying parameters AT (x) and σ2

R(x) = σ2(x), i.e., M(x) ∼ Rice(AT (x), σ(x)). The PDF is
given then by:

p(M(x)|AT (x), σ(x)) =
M(x)
σ2(x)

exp

(
−M

2(x) +A2
T (x)

2σ2(x)

)
I0

(
AT (x)M(x)

σ2(x)

)
, M(x) ­ 0.

(3.37)
In comparison to eq. (3.10), the underlying noise variance σ2(x) changes over the FOV,

i.e., it is position-dependent parameter (Fig. 3.5). We remark that the moments defined in
(3.17) and (3.18) also depend on the spatial position even though the image presents the
homogeneous region, i.e., the same spin densities are observed for different areas in FOV.

3.3.4 Accelerated parallel MRI acquisition (GRAPPA)

In accelerated parallel GRAPPA MRI, the noise component in the subsampled k–space raw
data sSl (k) is also assumed to be a stationary complex AWGN process. In a similar fashion
to eq. (3.34), we can define the relation between the noise variance in k–space and x–space
domains as follows (Aja-Fernández et al. 2014a):

σ2
Xl =

1
r · FOVx · FOVy

σ2
Kl for l = 1, . . . , L. (3.38)
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Contrary to (3.34), the noise variance is now reduced in the x–space domain. To explain the
noise behaviour in GRAPPA MR imaging, let us recall the eq. (2.30):

SRl (x) = FOVx · FOVy

L∑
k=1

SSk (x)�Wkl(x), (3.39)

where the symbol “�” denotes the Hadamard product of two matrices, SSk (x) is the x–space
equivalent to sSk (k) and Wkl(x) is the full FOV inverse DFT corresponding to wkl(k).

Since the inverse DFT preserves the Gaussianity of the noise, the eq. (3.39) can be
rewritten assuming the formula SSk (x) = ASk (x) +Nk(σ2

X ) (Aja-Fernández et al. 2011):

SRl (x) = FOVx · FOVy

L∑
k=1

(
ASk (x) +Nk(σ2

X )
)
�Wkl(x)

= FOVx · FOVy

L∑
k=1

ASk (x)�Wkl(x)︸ ︷︷ ︸
Reconstructed signal

+ FOVx · FOVy

L∑
k=1

Nk(σ2
X )�Wkl(x)︸ ︷︷ ︸

Gaussian noise

= ARl (x) +NRl (x).

(3.40)

Note that eq. (3.40) assumes same variance for each channel, i.e., σ2
Xl = σ2

X .

Sum of squares
In GRAPPA MR imaging, the final magnitude image ML(x) is usually obtained with SoS
formula (2.15). Since the components in SoS reconstruction are Gaussian distributed, the
magnitude signal ML(x) follows the nc-χ distribution. However, note that the effective
parameters are necessary to use the nc-χ model properly. For GRAPPA MRI and SoS
reconstruction, the effective parameters are defined as follows (Aja-Fernández et al. 2011;
see also Fig. 3.4):

1. the effective (decreased) number of receiver coils Leff:

Leff(x) =
A2
T (x)tr(CX) + (tr(CX))2

A∗(x)CXA(x) + ‖CX‖2F
, (3.41)

2. the effective (increased) variance of noise σ2
eff:

σ2
eff(x) =

tr(CX)
Leff(x)

, (3.42)

where A is given by A = [AR1 (x), . . . , ARL (x)]T , A2
T (x) =

L∑
l=1
|ARl (x)|2 and CX is the co-

variance matrix of the interpolated data given by CX(x) = W(x)ΣW∗(x) with the matrix
W(x) composed of the weights Wkl(x):

W(x) =


W11(x) W12(x) . . . W1L(x)

W21(x) W22(x) . . . W2L(x)
...

...
. . .

...

WL1(x) WL2(x) . . . WLL(x)

 . (3.43)

Note that in comparison with the effective parameters in multiple-coil acquisition (3.31–
3.32), the multiplication of effective parameters Leff(x)σ2

eff(x) is no longer constant across the
FOV and it depends on the covariance matrix CX = CX(x), i.e., Leff(x)σ2

eff(x) = tr(CX(x))
(see Fig. 3.4).
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3.4 Conclusions and remarks

In this chapter, we introduced various statistical models used to represent the magnitude
MRI data. We started with the most fundamental stationary Rician model used in single-coil
acquisitions (Gudbjartsson and Patz 1995), and then we generalized it to stationary nc-χ
model arranged in multiple-coil acquisitions (Constantinides et al. 1997). However, if the
correlations between the receiver coils are non-zero, the nc-χ model must be corrected by
effective parameters to fit the magnitude data obtained with SoS formula (Aja-Fernández
and Tristán-Vega 2012).

More advanced concepts arise in accelerated parallel MRI acquisition. For these
modalities, the noise becomes non-stationary, i.e., it is spatially variant over the FOV (Aja-
Fernández et al. 2014a). For SENSE MR imaging, the noise is given by a non-stationary
Rician distribution (Aja-Fernández et al. 2014b), while for GRAPPA MR imaging and SoS
reconstruction, it is represented by a non-stationary nc-χ distribution. Again, we must
employ effective parameters to take the correlations between receiver coils into account in
the nc-χ model (Aja-Fernández et al. 2011). We summarize the statistical models presented
in this chapter in Table 3.1.

Two final remarks are worth making:

1. All statistical models introduced in this chapter are valid for Cartesian sampling of
k–space domain. Even if the image reconstruction employs a projection-onto-convex-
sets (POCS) method like Sabati et al. 2013, it still assumes Cartesian sampling of the
raw MR signal.

2. Theoretical models are derived provided that the algorithms employ linear operators
to reconstruct the full FOV image. For the non-linear reconstructions like Chang et al.
2012 the noise distribution can be evaluated using empirical studies only.

3. The nc-χ distribution with effective parameters approximates the magnitude MR signal
for multiple-coil and GRAPPA MRI (both obtained with SoS).

4. The value of the variance of noise in SENSE MRI depends on the covariance matrix Σ
and the sensitivity maps Cl(x).

5. The value of the variance of noise in GRAPPA MRI with SoS depends on the covariance
matrix Σ and the reconstruction coefficients Wkl(x).

Table 3.1: Statistical distributions used in modelling the magnitude MRI data.

Modality
Magnitude Statistical

Stationarity Parameters
reconstruction model

single-coil absolute operator Rician stationary σ2

multiple-coil
SoS nc-χ stationary L, σ2

(uncorrelated)

multiple-coil
SoS nc-χ (approx.) non-stationary Leff(x), σ2

eff(x)
(correlated)

SENSE absolute operator Rician non-stationary σ2(x)

GRAPPA SoS nc-χ (approx.) non-stationary Leff(x), σ2
eff(x)
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4.1 Introduction

In this chapter, we go over the state-of-the-art in non-stationary noise estimation in MRI. The
review focuses on computational methods for Rician, nc-χ and Gaussian distributed signals.
These methods allow estimating spatially variant noise patterns in accelerated parallel MRI
acquisitions like SENSE MRI or GRAPPA MRI. We compare the methods in terms of noise
type assumptions, estimation domain and additional requirements, which must be taken into
account during the estimation process. We extensively illustrate all the methods, which are
arranged then in our numerical experiments in the contribution part of the thesis. Next,
the quantitative measures employed in the validation processes of the estimators are briefly
explained. Eventually, some general remarks about spatially variant noise estimators in MRI
are drawn.

4.2 Non-stationary noise estimation in MRI

One of the first attempts for spatially variant noise estimation in Rician distributed data was
proposed by Marzetta 1995 and subsequently adapted to single-polarization synthetic aper-
ture radar (SAR) images by DeVore et al. 2000. In these iterative schemes, the expectation-
maximization (EM) algorithm is used to find maximum likelihood (ML) estimates of the
parameters of a Rician distribution, i.e., the noise variance σ2(x) and the underlying signal
amplitude AT (x). Although DeVore et al. 2000 require multiple samples of the receiving
signal to estimate the noise level, it can also be related to the estimation process in a local
neighbourhood from a single MR image. In the MRI field, the pioneers of spatially variant
noise estimation are Samsonov and Johnson 2004, defining the method to obtain the noise
map from the receiver coil noise matrix, which, actually, is not always available in a typical
clinical routine.

In Delakis et al. 2007, the stationary wavelet transform (SWT) of the image at the first
scale is used to suppress the underlying signal component, i.e., to remove the low-low (LL)
subband coefficients. Then, the estimation is carried out assuming that inverse SWT of the
remaining signal follows Rayleigh distribution. This assumption is not true for low SNR as
it can be easily proved in the experimental way (see Fig. 4.1). Landman et al. 2009a and
Landman et al. 2009b proposed general frameworks to deal with spatially variant noise using
robust scale Qn estimator (see Rousseeuw and Croux 1993 for more details), followed by
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Figure 4.1: Mismatch between the actual σ and the estimated value σ̂ assuming that low-low
subband coefficients of the SWT of the Rician signal were suppressed and the remaining
signal follows Rayleigh distribution. The estimation is highly biased for low SNRs. The
underlying signal level for Rician distribution is set to AT = 25.
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outliers rejection and regularization procedure. Although the methods have been proposed
to cope with multiple independent scans and different signal contrast examinations (e.g., DWI
data, T1/T2 relaxometry), in the basic scenario, they can be employed to estimate the noise
map using a single image provided the biophysical model of the data.

In the context of general images, Goossens et al. 2006 presented a simple method to
estimate the noise map assuming that the image is corrupted by a non-stationary AWGN
process. The SWT is used to separate the noise assuming that the high-high (HH) sub-
band is strictly the noise component. Guo and Huang 2009 proposed local sample variance
as a noise level estimator after edges exclusion by means of local mutual information and
k-means segmentation algorithm. Nevertheless, the estimator is fixed in the total variation
regularization scheme and it suffers from the overestimations near to the edges. In Ding et al.
2010, a random noise in dynamic MR image series, e.g., cardiac function imaging or blood
flow velocity mapping, has been considered. This approach utilizes a temporal redundancy
between the acquisitions and it uses random matrix theory (Marchenko-Pastur distribution)
to model the noise level. The method does not require any specific data distribution or im-
age reconstruction technique assumptions. In Pan et al. 2012, a blind local noise estimation
procedure has been proposed assuming that the kurtosis of the MR image is constant across
different discrete cosine transformation (DCT) bands (Zoran and Weiss 2009). The method
provides a closed-form expression of the noise estimator for AWGN channel and it can be
efficiently implemented as a series of two-dimensional (2D) convolutions. Glenn et al. 2015
showed a simple estimation procedure for diffusion kurtosis imaging (DKI) using averaged
sample variances over the repeated acquisitions and diffusion-sensitizing gradients directions
followed by a bias correction and Gaussian smoothing of raw estimates. The proposed al-
gorithm is fast, though, it requires multiple acquisitions and any data misalignment might
result in biased results.

Rajan et al. 2011 presented the noise variance estimation scheme employing the ML
estimator for Rician distribution, previously proposed in the milestone paper by Sijbers
et al. 1998 and extensively investigated in Sijbers and Dekker 2004. The noise variance σ2(x)
is estimated along with the amplitude signal AT (x) in a restricted local likelihood, thus, the
pixels corresponding to the edges and different tissues in the neighbourhood are eliminated
from the estimation process. Maggioni and Foi 2012 exploit the sparsity of the representation
of similar 2D patches (neighbourhoods) in the non-local scheme using Gaussian and Rician
assumptions. A beneficial factor of these two methods over most of the aforementioned
noise estimation techniques so far is the possibility to simultaneously estimate the noise
map and denoise the image. Aja-Fernández et al. 2013 studied the practical implications of
the correlations between receiver coils and proposed the noise estimation approach for SoS
reconstruction from correlated multiple-coil MRI data.

Unlike previously cited methodologies, the following techniques initially calculate the
noise maps assuming Gaussian distribution, and then correct them to Rician/nc-χ case in the
low SNR regions (usually for SNR < 5). This correction is usually done using the algorithm
presented by Koay and Basser 2006. Note that all these techniques require the estimation
of an extra measure, the SNR, which also is position dependent, i.e., SNR(x). Sharing this
strategy, Manjón et al. 2010 modelled the noise variance as a minimal distance between
local patch of the current pixel and the remaining patches in the non-local means (NLM)
scheme. This approach uses the difference between noisy and low-pass filtered image to
determine distances between the patches. The method is based on the experimental reasoning
rather than grounded mathematical theory. In a similar fashion, Borrelli et al. 2014 handle
the difference between noisy and a NLM prefiltered image to obtain local sample variances
followed by median filtering and Rician adaptation. Maximov et al. 2012 generalized median
absolute deviation (MAD) robust estimator (see Hampel 1974 for details), initially proposed
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for stationary Rician case by Coupé et al. 2010, to estimate non-stationary Rician noise in
DTI. A very similar procedure, except the MAD estimator is calculated in the HH subband
of the SWT of spherically interpolated DWI data, has been proposed by Veraart et al. 2013.
The MAD estimator has also been adapted to non-stationary noise estimation procedure
from a single MR image by Liu et al. 2014. Although there are several modifications of
Coupé’s method, this methodology has gained a lot of interest in MRI community. Recently,
Dikaios et al. 2014 generalized the correction scheme presented by Koay and Basser 2006 to
approximate the sum of the Rician PDFs leading to a closed-form formula for noise estimation
in averaged DWI data. Finally, Veraart et al. 2016 presented another scheme to estimate the
spatially variant noise map in diffusion MR imaging using the redundancy of the signal in
multi-directional DWI data. The method identifies the noise level using the combination of
local principal component analysis (PCA) with random matrix theory.

We note here that some previously cited methods (e.g., Landman et al. 2009a,b, Maximov
et al. 2012, Veraart et al. 2013, Dikaios et al. 2014, Glenn et al. 2015 and Veraart et al. 2016)
estimate the noise maps in a voxelwise scheme. This is a particularly important procedure
in multiple contrast type techniques, e.g., DWI, perfusion imaging or T1/T2 relaxometry.
Specifically, the methods take the MRI data from all diffusion-sensitizing gradient directions
or contrast type into account to provide a single noise level for a given point of the image.

For the last two years, the number of new non-stationary noise estimators in MRI notably
increased. This is a clear sign of the awareness of the importance of this topic by the magnetic
resonance imaging community.

Aja-Fernández et al. 2014a presented comprehensive statistical noise analyses in SENSE
MRI and GRAPPA MRI providing closed form expressions for the spatially variant vari-
ance of noise for both modalities. The noise estimation techniques have also been proposed,
however, the methods require extra information like sensitivity coil profiles or reconstruc-
tion coefficients for SENSE and GRAPPA, respectively. In a similar fashion, Hansen et al.
2015 developed another scheme to measure the noise level of any linear combination of the
complex, magnitude, or phase pixel values of a Cartesian MRI acquisition. Nevertheless, the
method requires access to the raw MRI data and additional technical details about the ac-
quisition process, i.e., the image reconstruction matrix and the sampling pattern of the data
in k–space domain.

Lately, Tabelow et al. 2015 adapted the propagation-separation approach (Polzehl and
Spokoiny 2006) for nc-χ distributed MRI data. The method estimates spatially variant noise
maps by means of the weighted ML estimator, which is restricted to homogeneous regions.
The method is well-founded from the theoretical point of view, however, it is a computa-
tionally intensive procedure. At the same time, Aja-Fernández et al. 2015b proposed a ho-
momorphic approach to separate spatially variant noise into two terms: a stationary noise
term and the low-frequency component corresponding to the noise pattern. In comparison
with Landman et al. 2009a,b, Borrelli et al. 2014, Glenn et al. 2015 and Tabelow et al. 2015,
where the relaxation of the raw estimates is performed next to the estimation process, in the
homomorphic approach, the estimator uses a low-pass filter to model the noise pattern. The
homomorphic filter avoids the granular effect and it allows implementing the noise estimation
procedure as a 2D convolution. This is a great advantage over the previously presented noise
estimation methods. In Aja-Fernández and Vegas-Sánchez-Ferrero 2015, the homomorphic
filter has been further extended towards a blind noise estimation in GRAPPA imaging. Al-
though, the method assumes Gaussian distributed signal, it can be directly applied to the
GRAPPA MR image without a priori knowledge on the acquisition process.
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Table 4.1: Comparison of spatially variant noise estimation techniques in Rician, nc-χ and Gaussian distributed data.

Method Year Imaging type
Imaging Spatially Noise type Estimation Repeated Additional

weighting variant noise assumptions domain acquisitions data

Marzetta 1995 1995 SAR - yes Rician - - no

DeVore et al. 2000 2000 SAR - yes Rician image yes no

Samsonov and Johnson 2004 2004 SENSE T1, T2 yes Gaussian image (∓) no yes (	)

Sijbers and Dekker 2004 2004 No pMRI – yes (>) Rician image no no

Goossens et al. 2006 2006 – – yes Gaussian wavelet no no

Delakis et al. 2007 2007 SENSE not available yes Rayleigh wavelet – image no no

Landman et al. 2009a 2009 SENSE diffusion yes (?)
Gaussian (()

image yes yes (~, ⊗)
+ correction at low SNR

Landman et al. 2009b 2009 SENSE
T2 relaxometry,

yes (?)
Gaussian (./, ()

image yes (†) yes (~, ⊗)
diffusion + correction at low SNR

Guo and Huang 2009 2009 SENSE, GRAPPA T1 yes Gaussian image (±) no no

Ding et al. 2010 2010 No pMRI, SoS, SENSE T1 yes Gaussian (♦) image no (‡) no

Manjón et al. 2010 2010
No pMRI, SENSE

T1, T2, PD yes
Gaussian

image no no
GRAPPA + Rician adaptation

Rajan et al. 2011 2011 No pMRI T1, diffusion yes Rician image no no

Maximov et al. 2012 2012 No pMRI diffusion yes (?) Gaussian + Rician adaptation image yes no

Maggioni and Foi 2012 2012 No pMRI T1 yes Gaussian, Rician image no no

Pan et al. 2012 2012 SENSE T1 yes Gaussian image no no

Aja-Fernández et al. 2013 2013 SoS T1, diffusion yes nc-χ image no no

Veraart et al. 2013 2013 SENSE, SoS diffusion yes (?)
Gaussian + Rician/nc-χ

wavelet yes (×) no
adaptation

Aja-Fernández et al. 2014a 2014 SENSE, GRAPPA, SoS T1 yes Rayleigh, c-χ image no yes (�)

Liu et al. 2014 2014 No pMRI, SENSE
T1, T2, PD,

yes
Gaussian

wavelet no no
diffusion + Rician adaptation

Borrelli et al. 2014 2014 SENSE, GRAPPA T2 yes Gaussian + Rician adaptation image no no

Dikaios et al. 2014 2014 SENSE, GRAPPA diffusion yes (?) Gaussian + Rician adaptation wavelet yes no

Glenn et al. 2015 2015 No pMRI diffusion yes (?) Rician image yes no

Hansen et al. 2015 2015 pMRI (÷) perfusion yes Gaussian image no yes (�)

Aja-Fernández et al. 2015b 2015 SENSE T1 yes Gaussian, Rayleigh, Rician image no no

Tabelow et al. 2015 2015
SENSE, GRAPPA,

T1, diffusion yes nc-χ image no no
zoomed GRAPPA

Aja-Fernández and Vegas-Sánchez-Ferrero 2015 2015 GRAPPA T1 yes Gaussian wavelet no no

Manjón et al. 2015 2015 SENSE T1 yes Gaussian + Rician adaptation image no no

Poot and Klein 2015 2015 No pMRI, SENSE diffusion yes (?) Rician image no no

Veraart et al. 2016 2016 GRAPPA diffusion yes (?) Gaussian + nc-χ adaptation (♦) image no (×) no

Proposal (section 5) 2016 SENSE T1, T2, PD yes Rician image no no

Proposal (section 6) 2016 GRAPPA T1, T2, PD yes nc-χ image no no
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Legend (Table 4.1):
pMRI – accelerated parallel MRI.
(÷) The method can measure the noise level for any linear combination of the pixels in an
MR image.
(>) The general scheme is presented which can be employed to estimate spatially variant
noise.
(?) Noise is measured in a voxelwise scheme.
(() The method assumes that the difference between repeated acquisitions follows
Gaussian distribution.
(./) The method assumes that the residuals (difference between the noisy and the prefiltered
data) follows Gaussian distribution.
(♦) Noise is modeled assuming that the eigenvalues of the covariance matrix of a high-
dimensional data follows Marchenko-Pastur distribution.
(∓) Noise level is represented as a local conductance parameter in the anisotropic diffusion
filter.
(±) Noise level is estimated indirectly as a smoothing weight in the total variation
regularization.
(†) In the basic variant, the method requires a biophysical model of the imaging data
instead of repeated acquisitions.
(‡) The method is intended for successive dynamic image series rather than repeated
acquisitions.
(×) The method uses the information of different DWIs to estimate the noise.
(	) The method uses a receiver noise matrix and it requires additional samples from the
air background.
(~) The coil sensitivity model for the regularization procedure is required.
(⊗) The method requires multiple contrast type MR images.
(�) The method requires sensitivity maps for SENSE; reconstruction coefficients and
correlations between channels for GRAPPA.
(�) The image reconstruction matrix, sampling pattern of the k–space and the complex
MR images are required.

Manjón et al. 2015, in their recent work, proposed another noise estimation technique
using sparseness and self-similarity of MR images. They utilize the PCA in the NLM scheme
to extract the noise component. The noise level is obtained then as a median operator of
the eigenvalues of the PCA decomposition and it is subsequently corrected to deal with the
Rician case. In Poot and Klein 2015, a spatially regularized ML estimator was proposed
to simultaneously estimate the noise pattern and diffusion tensor parameters. The method
enables to set the regularization degree of the noise map by incorporating a maximum
a posteriori (MAP) estimator.

To sum up, most of the spatially variant noise estimation methods published in the
literature so far (and summarized in Table 4.1) show the following drawbacks:

1. The estimated noise maps are characterized by a certain level of granularity. Specifi-
cally, the estimates vary due to a small number of samples in local neighbourhoods.
Moreover, the inhomogeneity of the tissues leads to highly biased estimates near to the
edges.

2. The state-of-the-art methods do not take the signal-dependency of the noise in magni-
tude MRI data into account. This means that the noise component is usually assumed
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to be Gaussian distributed and the preliminary estimates are further adapted to the
Rician/nc-χ case (see the column Noise type assumptions in Table 4.1).

3. The methods significantly under- or overestimate the noise levels for low SNR areas,
i.e., for SNR < 5, where the signal tends to be Rayleigh/c-χ distributed.

4. The methods require multiple acquisitions, a biophysical model of the data and/or
additional information from the acquisition process (sensitivity maps for SENSE or re-
construction coefficients for GRAPPA). These varietes of extra parameters are usually
not available in conventional clinical routines (see columns Repeated acquisitions and
Additional data in Table 4.1).

5. The numerical procedures presented by some authors are computationally intensive
schemes (Rajan et al. 2011, Tabelow et al. 2015, Manjón et al. 2015).

6. Finally, some methods have originally been proposed to estimate the noise from stacked
images instead of separate estimations for each 2D slice (Rajan et al. 2011, Maggioni
and Foi 2012, Tabelow et al. 2015, Manjón et al. 2015). Since the SENSE/GRAPPA
reconstruction is different for each slice, the estimation cannot be done in three-
simensional (3D) data for in vivo acquisitions.

4.3 State-of-the-art methods used in the experiments

For the sake of comparisons of our proposals we use eighteen spatially variant noise
estimation methods from the state-of-the-art. The methods can be applied to a retro-
spectively reconstructed magnitude SENSE MRI and/or GRAPPA MRI data, and they are
divided into two categories:

• estimation from a single image M(x) (fourteen methods – section 4.3.1),

• estimation from multiple repeated scans M(k)(x)1 (four methods – section 4.3.2).

Our implementations of the methods follow a meticulous analyses of the algorithms, and
they were prepared in MATLAB scientific environment (The MathWorks, Inc., Natick, MA),
except Tabelow et al. 2015, where the source code in GNU R scientific package was provided
by the autors2. For Aja-Fernández et al. 2015b and Maggioni and Foi 2012 we used already
supplied MATLAB codes obtained from the authors homepages3 4.

4.3.1 Estimation from a single MR image

All these methods estimate the spatially variant noise map σ(x) (or equivalently the noise
variance map σ2(x)) from a single magnitude MR image M(x) without any additional in-
formation about the acquisition process.

1. DeVore et al. 2000
The EM algorithm previously proposed by Marzetta 1995 is used to find the ML
estimates for the parameters of the Rician distribution. The noise variance map σ2(x)

1We use the symbol M(k)(x) to denote the repeated k–th acquisition.
2http://cran.r-project.org/web/packages/dti/index.html
3http://www.mathworks.com/matlabcentral/fileexchange/48762-noise-estimator-for-sense-mri
4http://www.cs.tut.fi/~foi/GCF-BM3D/

http://cran.r-project.org/web/packages/dti/index.html
http://www.mathworks.com/matlabcentral/fileexchange/48762-noise-estimator-for-sense-mri
http://www.cs.tut.fi/~foi/GCF-BM3D/
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is estimated simultaneously with the underlying signal amplitude AT (x) in an iterative
way:

Âk+1(x) =

〈I1

(
Âk(x)

σ̂2
k
(x)
M(x)

)
I0

(
Âk(x)

σ̂2
k
(x)
M(x)

)M(x)

〉
x

, (4.1)

̂σ2
k+1(x) = max

{
1
2
〈M2(x)〉x −

1
2
Â2
k(x), 0

}
, (4.2)

where Ik(·) is the modified Bessel function of the first kind and k–th order, and
〈Mp(x)〉x is the local sample estimator of p–th raw moment defined as:

〈Mp(x)〉x =
1
|η(x)|

∑
p∈η(x)

Mp(p), p ∈ N (4.3)

with η(x) being a local neighbourhood centered at the pixel x and |η(x)| is the car-
dinality (number of pixels) of the patch η(x). The initialization process of the EM
algorithm is obtained by the method of moments:

Â0(x) =
[
2
(
〈M2(x)〉x

)2
− 〈M4(x)〉x

] 1
4
, (4.4)

σ̂2
0(x) =

1
2

[
〈M2(x)〉x − Â2

0(x)
]
. (4.5)

The algorithm stops after reaching kmax iterations.

2. Goossens et al. 2006
The method estimates the noise variance map σ2(x) from HH subband coefficients of
the SWT of the magnitude image at the first scale M (1,HH)(x):

σ̂2(x) =
〈(
M (1,HH)(x)

)2
〉

x
, (4.6)

where
〈
M (1,HH)(x)

〉
x

is the local sample estimator of the mean as defined in eq. (4.3).

3. Delakis et al. 2007
The method makes use of the SWT of the image M(x) at the first scale and LL subband
coefficients suppression to expose the noise component. Then, the noise variance map
σ2(x) is estimated in spatial domain of the image provided the inverse SWT M̆(x):

σ̂2(x) =
(

2− π

2

)−1 (
〈M̆2(x)〉x −

(
〈M̆(x)〉x

)2
)
, (4.7)

where M̆(x) is the image with suppressed LL subband coefficients and 〈M̆p(x)〉x is
defined as in eq. (4.3). If however the image M(x) contains an edge in a local neigh-
bourhood η(x), Delakis et al. 2007 suggest applying the directional analysis to correct
the preliminary noise variance level (4.7). Specifically, the averages along four direc-
tions (horizontal, vertical and two diagonal) in a local neighbourhood η(x) from M̆(x)
map are calculated and then compared to the pixel M̆(x). Finally, the new noise level
at x is calculated along the direction, which presents the closest average to the central
point M̆(x).
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Figure 4.2: (a) The correction function ξ(θ) (4.16) in terms of SNR level θ and (b) the
transcendental equation (4.17) for different values of δ = 〈M(x)〉x

̂σraw(x)
. For δ = 1.913, the solution

of (4.17) equals θ = 0.

4. Landman et al. 2009b
The general framework uses robust Qn estimator (Rousseeuw and Croux 1993) to
estimate the spatially variant noise map σ(x). In the basic scenario, the method can
be applied to a single slice M(x) provided a biophysical model of the data:

σ̂(x) = Qn ({p ∈ η(x) : ε(p)}) , (4.8)

where ε(x) is the difference (residual) between noisy magnitude data M(x) and a bio-
physical model projection onto data:

ε(x) = M(x)−Mmodel(x) (4.9)

with Mmodel(x) being the biophysical model of the data. The Qn is the scale estimator
defined as:

Qn({x1, . . . , xn}) = 2.2219 · {|xi − xj |; i < j}(k) , (4.10)

where the symbol {·}(k) denotes k–th element in the ascending ordered data (order

statistics) and here k = bn/2c(bn/2c+1)
8 with bxc being the largest integer not larger

than x 5. Finally, to mitigate the impact of the outliers, Landman et al. 2009b proposed
to re-estimate the noise map by removing the observations with lower SNR than the
adaptive computed threshold t(x):

t(x) = min

{
5, median

p∈η(x)

(
M(p)

σ̂(x)

)
− 3

}
. (4.11)

5. Manjón et al. 2010
The raw local noise variance σ2

raw(x) is modelled as a minimal distance between local
neighbourhood (patch) of the current pixel R(x) and the remaining patches R(p) in
the NLM scheme (Buades et al. 2005):

σ̂2
raw(x) = min

p∈V (x) : p 6=x
‖R(x)−R(p)‖22, (4.12)

where V (x) (V (x) ⊃ R(x)) is the search window and the patches R(x) and R(p) are
obtained from ε(x):

ε(x) = M(x)− 〈M(x)〉x . (4.13)

5For n being an odd number we can define k = n2−1
16 .
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The distance between the patches R(x) and R(p) in eq. (4.12) is calculated using the
`2–norm as follows:

dist(R(x), R(p)) = ‖R(x)−R(p)‖2 =
√∑

j

(R(xj)−R(pj))2 (4.14)

with R(xj) being the intensity of j–th pixel in the patch R(x). In low SNR regions

the raw map σ̂2
raw(x) is underestimated and it is corrected then using the procedure

described by Koay and Basser 20066:

σ̂(x) =
σ̂raw(x)√
ξ(θ)

, (4.15)

where the function ξ(θ) is defined as follows (Fig. 4.2a):

ξ(θ) = 2 + θ2 − π

8
exp

(
−θ

2

2

)[(
2 + θ2

)
I0

(
θ2

4

)
+ θ2I1

(
θ2

4
,

)]2

(4.16)

and the local SNR parameter θ = SNR(x) is obtained from the solution of the tran-
scendental equation (Fig. 4.2b):

θ = F (θ), F (θ) =

√√√√√ξ(θ)
1 +

(
〈M(x)〉x
σ̂raw(x)

)2
− 2. (4.17)

The transcendental equation (4.17) is usually solved in the iterative way using the
Newton’s method of root finding until |θk+1 − θk| > θERR (see Koay and Basser 2006
for more details).

6. Rajan et al. 2011
The local noise variance σ2(x) is calculated using Rician ML estimator (Sijbers and
Dekker 2004):{

ÂT (x), σ̂2(x)
}

= argmax
AT ,σ2

(
logL(AT , σ2| {M(p) : p ∈ η(x)})

)
, (4.18)

where the log-likelihood function logL(AT , σ2|·) is defined as:

logL(AT , σ2| {M(p) : p ∈ η(x)}) =
∑

p∈η(x)

log
(
M(p)
σ2

)
−

∑
p∈η(x)

M2(p) +A2
T

2σ2

+
∑

p∈η(x)

log I0

(
ATM(p)

σ2

)
(4.19)

and η(x) is the restricted local likelihood:

η(x) = {p ∈ V (x) : |MNLM(x)−MNLM(p)| < t} , (4.20)

where MNLM(x) is the image M(x) filtered by NLM algorithm (Buades et al. 2005) and
V (x) is the search window in the NLM scheme. Threshold t in eq. (4.20) is obtained
from the histogram of all local ranges of the image MNLM(x) using the mode operator:

t = mode
p∈Ω∆

(
Histogramnb

(Mrange(p))
)
, (4.21)

6Although the correction function was published by Koay and Basser 2006, the approach had been proposed
a few years earlier by Marcos Mart́ın-Fernández in his PhD thesis (see Mart́ın-Fernández et al. 2009a and
Mart́ın-Fernández et al. 2009b for more details).
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where Ω∆ is the foreground area of the image. The histogram in eq. (4.21) is defined
for nb bins and it is derived from the image representing local ranges Mrange(x):

Mrange(x) = max
p∈η(x)

(
MNLM(p)

)
− min

q∈η(x)

(
MNLM(q)

)
. (4.22)

7. Pan et al. 2012
At first, the response images MDCTk(x) are obtained by convolving the noisy image
M(x) with each DCT basis:

MDCTk(x) =
∑

p∈η(x)

M(p) ·DCTk(x− p) for k ∈ {1, 2, . . . , N ×N} , (4.23)

where DCTk(x) is the k–th filter from N × N DCT basis. The noise variance map
σ2(x) is estimated then using the relation between the variance and the kurtosis of
noise-free and noisy data assuming the AWGN channel (Pauluzzi and Beaulieu 2000):

σ̂2(x) =
1〈
1

σ̃2
k
(x)

〉
k

−

〈
1

(σ̃2
k
(x))2

〉
k

−
(〈

1
σ̃2
k
(x)

〉
k

)2

〈√
κ̃k(x)

〉
k

〈
1

(σ̃2
k
(x))2

〉
k

−
〈√

κ̃k(x)
σ̃2
k
(x)

〉
k

〈
1

σ̃2
k
(x)

〉
k

·

〈√
κ̃k(x)

〉
k〈

1
σ̃2
k
(x)

〉
k

,

(4.24)
where 〈·〉k is the pointwise average along all N ×N bands. The variance σ̃2

k(x) and the
kurtosis κ̃k(x) of k–th response image MDCTk(x) are defined in terms of local sample
estimators of p–th raw moments (4.3):

σ̃2
k(x) =

〈
M2

DCTk(x)
〉

x
−
(
〈MDCTk(x)〉x

)2 (4.25)

and

κ̃k(x) =

〈
M4

DCTk(x)
〉

x
− 4

〈
M3

DCTk(x)
〉

x
〈MDCTk(x)〉x(

σ̃2
k(x)

)2
+

6
〈
M2

DCTk(x)
〉

x

(
〈MDCTk(x)〉x

)2 − 3
(
〈MDCTk(x)〉x

)4(
σ̃2
k(x)

)2 . (4.26)

8. Maggioni and Foi 20127

The method is based on BM4D algorithm (Maggioni et al. 2013), which is the general-
ization of the milestone in digital image processing BM3D algorithm to volumetric data
(Dabov et al. 2007). At first, the cubes C(p) are stacked together and the photometric
distances to the reference (center) cube C(x) are calculated:

dist(C(x), C(p)) =
‖C(x)− C(p)‖22

L3 , (4.27)

where L × L × L (L ∈ N) is the size of the cube and ‖ · ‖2 is the `2–norm measured
using the corresponding intensities in the input two cubes (see eq. (4.14)). Next, the
set of indices of the cubes that are similar to C(x) are defined as:

Ξ(x) = {p : dist(C(x), C(p)) ¬ τmatch} (4.28)

7The method has been initially proposed to deal with stacked images (3D cubes).
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with τmatch denoting a predefined threshold. The set of indices (4.28) is used then to
build the group GΞ(x) associated to the reference cube C(x) using the disjoint union
operation:

GΞ(x) =
⊔

p∈Ξ(x)

C(p) = {(C(p),p) : p ∈ Ξ(x)} . (4.29)

Finally, the noise level at x for Gaussian distributed data is estimated using MAD
estimator, which is applied to the high-frequency coefficients ΦΞ(x) in the group GΞ(x):

σ̂(x) = 1.4826 · median
φk∈ΦΞ(x)

∣∣∣∣∣φk −median
φl∈ΦΞ(x)

(φl)

∣∣∣∣∣ , (4.30)

where φk is the k–th coefficient of the high-passed spectrum ΦΞ(x) given by:

ΦΞ(x) = H
(
I
(
GΞ(x)

))
. (4.31)

Two operations are needed for (4.31):

• the decorrelating linear transform I, which is separably applied to every dimension
of the group GΞ(x),

• a high-pass filterH that discards the hyperplane representing the DC component8.

9. Maximov et al. 2012
The method uses MAD estimator (Hampel 1974) previously adapted to stationary
noise estimation in MRI by Coupé et al. 2010. Although the estimator was proposed to
deal with repeated scans, it can also be related to the estimation process from a single
slice M(x) as follows:

σ̂raw(x) = 1.4826 ·median
p∈η(x)

∣∣∣∣∣M(p)−median
q∈η(x)

(
M(q)

)∣∣∣∣∣ . (4.32)

In the same way as Manjón et al. 2010, the correction factor (4.15) is needed to obtain
the final noise map σ̂(x) from (4.32).

10. Liu et al. 2014
The method estimates the raw noise map σraw(x) using MAD estimator from HH
subband coefficients of the SWT of the image at the first scale M (1,HH)(x):

σ̂raw(x) = 1.4826 ·median
p∈η(x)

∣∣∣∣∣M (1,HH)(p)−median
q∈η(x)

(
M (1,HH)(q)

)∣∣∣∣∣ . (4.33)

The correction factor (4.15) is also necessary to obtain σ̂(x) from (4.33).

11. Borrelli et al. 2014
The raw noise variance map ̂σ2

raw1
(x) is estimated from the image ε(x) using the second

order central moment:

̂σ2
raw1

(x) = 〈ε2(x)〉x − (〈ε(x)〉x)2 , (4.34)

where ε(x) is defined as:
ε(x) = M(x)−MNLM(x) (4.35)

8Although the abbreviation DC refers to direct current term in electrical engineering, it is also used in
context of digital image processing. However, here the term DC relates to the “average” hyperplane in the
data.
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with MNLM(x) being the prefiltered image M(x) by the NLM filter (Buades et al.
2005). Then, the raw noise variance map (4.34) is smoothed using median filter:

̂σ2
raw2

(x) = median
p∈η(x)

(
̂σ2
raw1

(p)
)
. (4.36)

Finally, the correction factor (4.15) is applied to (4.36) to get the final noise variance

map σ̂2(x).

12. Tabelow et al. 2015
The method estimates local noise level σ(x) using the iterative propagation-separation
approach (Polzehl and Spokoiny 2006). Specifically, the estimation procedure is re-
stricted to adaptively refined homogeneous regions and the weighted ML estimator is
applied then as follows:

̂σrawk(x) =

√
Nk(x)

Nk(x)− 1
argmax
σ : σ2­ ζ

2L

(
L(σ| {M(p) : p ∈ η(x)} , {wk(p) : p ∈ η(x)})

)
,

(4.37)
where the likelihood function L(σ|·, ·) is defined as follows:

L(σ| {M(p) : p ∈ η(x)} , {wk(p) : p ∈ η(x)}) =

−Nk(x)
(
ζ

σ2 + 2 log σ +
L− 1

2
log

(
ζ − 2Lσ2

))
+

∑
p∈η(x)

wk(p) log IL−1

(
M(p)
σ2

√
ζ − 2Lσ2

)
(4.38)

with IL−1 being the modified Bessel function of the first kind and (L − 1)–th order.
The parameter ζ in (4.38) is given by:

ζ =
1

Nk(x)

∑
p∈η(x)

wk(p)M2(p), (4.39)

where Nk(x) =
∑

p∈η(x)
wk(p) and wk(p) being the weight of the pixel M(p) at position

p in k–th iteration of the inference process. Finally, the raw noise estimates ̂σrawk(x)
are corrected using local median filter:

σ̂k(x) = median
p∈η(x)

(
̂σrawk(p)

)
. (4.40)

The algorithm stops after reaching kmax iterations.

Two important issues are remarkable about Tabelow’s algorithm:

• the weights wk(p) at the position x are computed adaptively in each k–th iteration
of the algorithm (see Polzehl and Spokoiny 2006 and Tabelow et al. 2015 for more
details),

• the number of coils L must be tuned locally to avoid nc-χ model misspecifica-
tion. Such correction was proposed for accelerated parallel GRAPPA MRI (Aja-
Fernández et al. 2011) and multiple-coil acquisitions (Aja-Fernández et al. 2013).
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Figure 4.3: The correction function Φ(θ) (4.46) and ϕ(θ) (4.48) in terms of SNR level θ.

13. Manjón et al. 2015
The method estimates local noise level σ(x) using PCA in NLM scheme. Specifically,
for each point of the data x a set of N the most similar patches P (p) to the current
patch P (x) from the search window V (x) (V (x) ⊃ P (x)) are reordered as row vectors
to form a matrix X:

X =


P (p1

1) P (p2
1) . . . P (pK1 )

P (p1
2) P (p2

2) . . . P (pK2 )

. . . . . . . . . . . .

P (p1
N ) P (p2

N ) . . . P (pKN )

 , (4.41)

where K is the number of elements in a single patch (N = K) and P (pji ) denotes the
intensity of j–th pixel in i–th the most similar patch to P (x). The similarity (distance)
between two patches P (x) and P (p) is calculated using `2–norm:

dist(P (x), P (p)) = ‖PG(x)− PG(p)‖2 =

√√√√ K∑
j=1

(PG(xj)− PG(pj))2, (4.42)

where the patch PG(p) is an equivalent to the patch P (p), however, it is obtained from
a guided image MG(x)9:

MG(x) = median
p∈η(x)

(
M(p)

)
. (4.43)

The PCA is applied therefore to the matrix X and the raw local noise map σraw(x) is
estimated as follows:

σ̂raw(x) = 1.29 ·
√

median
λ∈λt

(λ) where λt =
{
λi :

√
λi < 2 ·median

λ
(
√
λ)
}

(4.44)

with λ being the eigenvalues of the PCA decomposition at x. Finally, the raw noise
map (4.44) is corrected to Rician case as follows:

σ̂(x) = σ̂raw(x)Φ(θ), (4.45)

9Compare to Maggioni and Foi 2012, where the similarity between two cubes (patches) is derived from the
noisy image.
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where the correction function Φ(θ) is defined in terms of SNR (Fig. 4.3a):

Φ(θ) =


0.9846(θ−1.86)+0.1983

(θ−1.86)+0.1175 if θ > 1.86

0 otherwise
(4.46)

with θ = SNR(x) being the local SNR level at x. As the final step of the algorithm,
the low-pass filter is applied to (4.45) to get a more realistic noise pattern.

14. Aja-Fernández et al. 2015b, Aja-Fernández and Vegas-Sánchez-Ferrero 2015
Two estimators are proposed for Gaussian and Rician noise, respectively:

σ̂(x) =
√

2 exp
(

LPFσf {log |M(x)− E {M(x)}|}+
γ

2

)
, (4.47)

σ̂(x) =
√

2 exp
(

LPFσf {log |M(x)− E {M(x)}|}+
γ

2

)
exp (−ϕ(θ)) , (4.48)

where LPFσf {·} is a low-pass Gaussian filter with standard deviation σf, E {M(x)}
denotes the expectation value in each point of the image, ϕ(·) is the correction function
in terms of local SNR θ = SNR(x) (see Fig. 4.3b) and γ is the Euler-Mascheroni
constant defined as:

γ = lim
n→∞

(
n∑
k=1

1
k
− log(n)

)
≈ 0.57721. (4.49)

Note that the estimators (4.47) and (4.48) need an estimation procedure of the param-
eter E {M(x)}. If the estimation is carried out by local sample moments (4.3), the local
stationarity of the data is implicitly assumed. This assumption is not valid in regions
with more than one tissue, particularly on transitions, and therefore the estimation can
be biased.

4.3.2 Estimation along multiple MRI scans

These methods estimate the noise map σ(x) (or equivalently the noise variance map σ2(x))
using multiple replicas (repetitions) M(k)(x) for k = 1, 2, . . . ,K (see the scheme in Fig. 4.4).
The results obtained with the methods serve as silver standard references in the evaluation
processes of spatially variant noise estimation algorithms from a one single image.

{replicas 

Pointwise estimation
along the replicas

Estimated spatially   
 variant noise map          

10

14

18

22

26

Figure 4.4: The general scheme of the noise estimation along the replicas. The estimation is
performed pointwisely along the images M(k)(x).
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1. DeVore et al. 2000
The noise variance map σ2(x) is estimated along with the underlying signal amplitude
AT (x) across the replicas M(k)(x) in an iterative way:

Âk+1(x) =

〈I1

(
Âk(x)

σ̂2
k
(x)
M(k)(x)

)
I0

(
Âk(x)

σ̂2
k
(x)
M(k)(x)

)M(k)(x)

〉
k

(4.50)

and
̂σ2
k+1(x) = max

{
1
2
〈M2

(k)(x)〉k −
1
2
Â2
k(x), 0

}
, (4.51)

where 〈Mp
(k)(x)〉k is defined as follows:

〈Mp
(k)(x)〉k =

1
K

∑
k∈{1,2,...,K}

Mp
(k)(x), p ∈ Z. (4.52)

The initialization process of the EM algorithm is obtained by the method of moments:

Â0(x) =
[
2
(
〈M2

(k)(x)〉k
)2
− 〈M4

(k)(x)〉k
] 1

4
, (4.53)

σ̂2
0(x) =

1
2

[
〈M2

(k)(x)〉k − Â2
0(x)

]
. (4.54)

The algorithm stops after reaching kmax iterations.

2. Landman et al. 2009b
The noise map σ(x) is estimated using Qn estimator (4.10):

σ̂(x) = Qn
(
{k ∈ {1, 2, . . . ,K} : ε(k)(x)}

)
, (4.55)

where ε(k)(x) is the residual, which we define as follows10:

ε(k)(x) = M(k)(x)− 〈M(k)(x)〉k. (4.56)

Again, the re-estimation procedure is applied after removing the observations M(k)(x)
with lower local SNR than the adaptive computed threshold t(x):

t(x) = min

{
5, median

k∈{1,2,...,K}

(
M(k)(x)

σ̂(x)

)
− 3

}
. (4.57)

3. Maximov et al. 2012
The raw noise map σraw(x) is obtained using MAD estimator along the repetitions
M(k)(x) as follows:

σ̂raw(x) = 1.4826 · median
k∈{1,2,...,K}

∣∣∣∣∣M(k)(x)− median
l∈{1,2,...,K}

(
M(l)(x)

)∣∣∣∣∣ . (4.58)

The correction factor (4.15) is also applied to (4.58) to obtain the final noise map σ̂(x).
However, the sample estimator of the mean in (4.17) is calculated along the replicas
M(k)(x) using (4.52) rather than in a local neighbourhood.

10Landman et al. 2009b assume multiple contrast type examinations to estimate the noise map. Since we
use the same contrast type for all images M(k)(x) we can define the biophysical model to be the pointwise
average along all the replicas.
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Table 4.2: Extra parameters used by the state-of-the-art methods in our experiments.

Method Parameters

Estimation from a single image M(x)

DeVore et al. 2000 kmax = 10

Goossens et al. 2006 Daubechies7 (db7) wavelet is used for the SWT decomposition

Delakis et al. 2007 db7 wavelet is used for the SWT decomposition,

the directional analysis is not used (see Delakis et al. 2007 for more details)

Landman et al. 2009b BM4D algorithm is used to provide the biophysical model of the MRI data,

BM4D algorithm uses default parameters (Maggioni and Foi 2012)

Manjón et al. 2010 the image M(x) is smoothed in a 3× 3 window to obtain 〈M(x)〉x for eq. (4.13),

NLM: size of patches equals 5× 5, size of the search window equals 11× 11,

θERR = 1.0× 10−6, the formula (4.17) uses 5× 5 windows to estimate 〈M(x)〉x
Rajan et al. 2011 NLM: size of patches equals 5× 5, size of the search window equals 11× 11,

nb = 1000, the range filter (4.22) is applied in a 3× 3 window

Pan et al. 2012 8× 8 DCT bases are used for (4.23), local sample estimators of p–th raw

moments in (4.25) and (4.26) are calculated in 5× 5 windows,

Maggioni and Foi 2012 the parameters are set according to the authors recommendations

Maximov et al. 2012 θERR = 1.0× 10−6, the formula (4.17) uses 5× 5 windows to estimate 〈M(x)〉x
Liu et al. 2014 θERR = 1.0× 10−6, the formula (4.17) uses 5× 5 windows to estimate 〈M(x)〉x
Borrelli et al. 2014 NLM: size of patches equals 5× 5, size of the search window equals 11× 11,

median filter (4.36) uses 5× 5 windows,

θERR = 1.0× 10−6, the formula (4.17) uses 5× 5 windows to estimate 〈M(x)〉x
Tabelow et al. 2015 kmax = 10, the number of the receiver coils is assumed to be one (i.e., L = 1),

other parameters are set according to the authors recommendations

Manjón et al. 2015 NLM: size of patches equals 5× 5, size of the search window equals 11× 11,

N = K = 25, the guided image (4.43) is calculated in a 3× 3 window,

the parameter θ in (4.46) is calculated as θ = SNR(x) = 〈M(x)〉x
̂σraw(x)

,

5× 5 window is used to calculate 〈M(x)〉x for local SNR,

final smoothing of the noise map (4.45) is performed in a 11× 11 window as 〈σ̂(x)〉x
Aja-Fernández et al. 2015b σf = 3.4, DeVore’s EM algorithm (4.1, 4.2) is used to calculate E {M(x)}

for T1-weighted MRI data, and the SWT decomposition with db7 wavelet

is arranged for T2- and PD-weighted MRI data,

local SNR is estimated using DeVore’s EM algorithm (4.1–4.2) with kmax = 10

as SNR(x) = Âk(x)/σ̂k(x), 3× 3 window is used for DeVore’s algorithm

Estimation along multiple scans M(k)(x)

DeVore et al. 2000 kmax = 10

Landman et al. 2009b no parameters required

Maximov et al. 2012 θERR = 1.0× 10−6

Glenn et al. 2015 the raw noise variance map is smoothed using isotropic Gaussian filter of size 5× 5

with standard deviation set to σGlenn = 5

Sample standard deviation no parameters required

along the replicas

4. Glenn et al. 2015
The raw noise variance map is estimated using the formula11:

σ̂2
raw(x) =

(
K

K − 1

)[
〈M2

(k)(x)〉k −
(
〈M(k)(x)〉k

)2
]
. (4.59)

Then, the raw noise variance map (4.59) is smoothed using Gaussian low-pass filter to

obtain the final noise variance pattern σ̂2(x). The coefficients of circularly symmetric

11Glenn et al. 2015 calculate the noise variance map for each diffusion-sensitizing gradient direction followed
by averaging the results along all directions. Since we have only one contrast type data, we skip this step.
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Gaussian filter can be defined for any p ∈ η(x) as follows:

GσGlenn(p) =
1

2πσ2
Glenn

exp

(
−‖x− p‖22

2σ2
Glenn

)
, (4.60)

where ‖·‖ is the `2–norm and σGlenn is the standard deviation (same for both directions).

5. Sample standard deviation along the replicas
We refer to this simple approach as a silver standard method for spatially variant nc-χ
estimation. The straightforward way to estimate the noise standard deviation σ(x)
might be:

σ̂(x) =

√
〈M2

(k)(x)〉k −
(
〈M(k)(x)〉k

)2
. (4.61)

Note that the estimator (4.61) is biased for Rician and nc-χ signals for low SNR, and
it should be applied to AWGN data only.

4.3.3 Specific parameters used by the state-of-the-art methods

All reference techniques presented in section 4.3.1 use squared windows of size 5×5 to obtain
the noise estimate in a local neighbourhood η(x) except for DeVore’s EM algorithm, where
3 × 3 window is observed to be optimal. A short characterization of additional parameters
used by the state-of-the-art methods is included in Table 4.2:

4.4 Quantitative evaluation of the methods

The accuracy of noise estimators in synthetic MRI data experiments is evaluated using
pointwise relative error (RE) of an estimate σ̂i(x) for i–th repetition of the experiment
(Fig. 4.5):

REi(x) =

∣∣∣σ̂i(x)− σ(x)
∣∣∣

σ(x)
, (4.62)

where σ(x) is the ground truth noise map. Then, the REs are pointwisely averaged along R
repetitions:

RE(x) =
1
R

R∑
i=1

REi(x). (4.63)

While the former measure is used in visual inspections of the methods, the latter one is
employed in quantitative numerical evaluations. To this end, the parameter RE(x) is spatially
averaged across the foreground area Ω∆ of the image to get one single value for a given SNR
level. We refer to this spatially averaged parameter as RE.

Furthermore, we define the variance (VAR) of the parameter RE(x) as the pointwise
variance along the repetitions (Fig. 4.5):

VAR(x) =
1

R− 1

R∑
i=1

(REi(x)− RE(x))2 . (4.64)

In a similar fashion to RE(x), we spatially average VAR(x) over the area Ω∆ to get the
variance of the estimator for a given SNR. The spatially averaged parameter is referred then
as VAR.

To detect the foreground area Ω∆ of the image M(x), we used a simple thresholding
followed by a morphological closing operator. This operator removes small objects and fills
the holes in a thresholded binary image.
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Figure 4.5: Averaging process of the quantitative parameters RE(x) (4.63) and VAR(x) (4.64). The white pixels of the binary mask determine the
foreground area Ω∆ of the image M(x).
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The morphological closing operator is defined as follows (Gonzalez and Woods 2008,
Parker 1997):

Mfg = (Mb ⊕ S)	 S, (4.65)

where Mb = Mb(x) is the thresholded binary image, S is the structuring element and
Mfg = Mfg(x) is the final mask of the foreground area Ω∆ of the image M(x). Two operations
are needed for (4.65) namely the dilation and the erosion of the image. The dilation of the
binary image Mb using the structuring element S is given by:

Mb ⊕ S =
{
p : S ′(p) ∩Mb(x) 6= ∅

}
, (4.66)

where S ′ is the reflection of S defined as:

S ′ = {w : w = −p, for p ∈ S} . (4.67)

The erosion of the binary image Mb by S is defined then by:

Mb 	 S = {p : S(p) ⊆Mb(x)} . (4.68)

4.5 Conclusions and remarks

In this chapter we presented the most up-to-date state-of-the-art survey of noise estimation in
non-stationary Rician, nc-χ and Gaussian distributed signals. These methods are employed
then to estimate spatially variant noise patterns in accelerated parallel MRI acquisitions in
the contribution part of the thesis.

The methods extensively illustrated in section 4.3.1 are used to infer about noise char-
acteristics from a single image without any additional information about the acquisition
process. The algorithms from section 4.3.2 are arranged to provide silver standard refer-
ences along multiple repetitions (replicas) of the data. The estimators are used for those
experiments, where the repeated acquisitions are available.

In section 4.3.3 we provided a complete list of extra parameters used by the state-of-the-
art methods from sections 4.3.1 and 4.3.2. Although the methods use different paradigms and
tunable parameters to estimate local noise level, we tried to find a common denominator for
all of them. For Maggioni and Foi 2012, Tabelow et al. 2015 and Aja-Fernández et al. 2015b
we used the third-party code along with standard parameters suggested by the authors. We
note that not all of the authors exactly specify the parameters of the methods used in their
experiments. For example, Pan et al. 2012 do not define the size of a DCT basis, while Rajan
et al. 2011 do not provide the number of bins nb used for the histogram (4.21).

Eventually, the noise variance estimates σ̂2(x) coming from DeVore et al. 2000, Goossens
et al. 2006, Delakis et al. 2007, Rajan et al. 2011, Pan et al. 2012, Borrelli et al. 2014 and Glenn
et al. 2015 are squared for consistent comparisons with other methods in all experiments.
Moreover, some methods presented in section 4.3.1 (Rajan et al. 2011, Maggioni and Foi
2012, Tabelow et al. 2015, Manjón et al. 2015) were originally proposed to deal with stacked
images. We apply them for single MRI slices in our experiments. Last but not least, although
the estimated noise maps are reliable in the foreground areas only, we calculate them also in
the background regions in some quantitative experiments.
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5.1 Introduction

In this chapter we propose a new method to automatically retrieve spatially variant noise
patterns from non-stationary Rician distributed images. This kind of non-stationary noise is
particularly interesting, since we can find it in accelerated parallel SENSE MRI acquisitions.

Our proposal is developed by defining a variance-stabilizing transformation (VST) for
Rician distribution. The VST enables to transform the magnitude MRI data from a non-
stationary variate to a stationary Gaussian variate. Afterwards, the spatially variant noise
pattern is estimated by a homomorphic filtering procedure. The proposal is compared to
fourteen most relevant state-of-the-art methods in non-stationary Rician and Gaussian noise
estimation and additionally to four methods providing silver standard references using mul-
tiple replicas of the data.

Compared to the previous noise estimation methods, the pioneering nature and the main
advantages of our proposal over the state-of-the-art are as follows:

1. It uses the exact theoretical transformation (the variance-stabilizing transformation)
from Rician to Gaussian distribution rather than Gaussian assumptions followed by
empirical corrections. Consequently, the noise estimation method is robust for the
whole range of SNRs (from very low SNRs – non-stationary Rayleigh distribution to
very high SNRs – non-stationary Gaussian distribution).

2. It estimates the noise patterns using only a single image without the need to extract
the background or foreground regions.

3. Pre-scans, repeated acquisitions or a biophysical model of the MRI data are not required
for the estimation procedure.

4. Any additional information from the acquisition process like sensitivity profiles or noise
matrices of the receiver coils is also unnecessary. Clearly, a method is vendor indepen-
dent and it works for a retrospectively reconstructed MRI data.

5. The proposal can be applied to different contrast type examinations including T1-, T2-,
and PD-weighted MRI data sets.

6. The method is not affected by the granular effect as the final step of the algorithms is
the homomorphic filtering procedure.

7. The proposal is fast since it is implemented using discrete convolutions and pointwise
operations.

This chapter is organized as follows. In section 5.2 we introduce the VST methodology, the
asymptotic stabilizer for Rician distribution and present numerical models proposed by Foi
2011. Then, we derive a new transformation for stationary Rician distribution, which provides
a robust stabilization in the whole set of SNRs in comparison with Foi’s models. Later on, in
section 5.3, we adapt the proposed VST to non-stationary Rician distribution and introduce
the spatially variant Rician noise estimation scheme in the VST framework. In section 5.4
we present the set of synthetic and real MRI data sets employed in the evaluation process of
our proposal against the state-of-the-art. Section 5.5 is devoted to experimental verification
of our proposal. At first, we confirm the robustness of the proposed VST procedure for the
whole range of SNRs throughout the statistical hypothesis testing. Then, we show several
quantitative and qualitative experiments in comparison with the state-of-the-art methods
presented in section 4.3. Finally, in the last paragraph of the chapter the concluding remarks
are drawn.
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5.2 The variance-stabilizing transformation

The VST principle has recently gained a lot of attention in digital image processing field,
both in theoretical and application aspects. Although the VST is usually applicable to med-
ical and astronomical data, it is not only limited to these sources, and it can also be related
to modelling the raw data from a charge-coupled device (CCD) sensor (Foi 2009a, Pyatykh
and Hesser 2014 and Zhang et al. 2015a) or lossy compression of hyperspectral images (Zem-
liachenko et al. 2014). In the field of medical imaging, the VST is principally used to deal
with Poisson (Makitalo and Foi 2011, Zhang et al. 2008), Poisson-Gaussian (Boulanger et al.
2010, Mäkitalo and Foi 2013, Bajic et al. 2016), and Rician noise (Foi 2011). In this chapter,
however, we are interested in modelling Rician distributed signals. The VST in context of
processing the MRI data is a particularly useful methodology, since it has been applied to effi-
ciently solve various signal and image processing problems, e.g., stationary signal-dependent
noise estimation (Foi 2011), image denoising (Maggioni et al. 2013, Yang et al. 2015, Zhang
et al. 2015b), diffusion-weighted MRI data reconstructions (Shafiee et al. 2015) and the
analysis of resting-state fMRI data (Thompson and Fransson 2016).

5.2.1 Asymptotic stabilizer for Rician distributed data

In this section we briefly present the basic definition of VST and therefore we put the
VST into the context of modelling Rician distributed noise. Without loss of generality, we
use the symbol M : Ω → R to denote both a real-valued Rician RV and its realization (an
observation). For the sake of argument, let us assume now that M follows stationary Rician
distribution with noncentrality parameter AT and scale σ (i.e., M ∼ Rice(AT , σ)). The PDF
of this RV is defined as follows:

p(M |AT , σ) =
M

σ2 exp

(
−M

2 +A2
T

2σ2

)
I0

(
ATM

σ2

)
, M ­ 0, (5.1)

where I0(·) is the modified Bessel function of the first kind and zeroth order.
The fundamental inconvenience of modelling Rician distributed data is the signal-

dependence of the second-order central moment (the variance). Let us recall this functional
dependence of the variance Var{M} on the underlying signal AT :

Var{M} = Var {M |AT , σ} = A2
T + 2σ2 − πσ2

2 1F
2
1

(
−1

2
; 1;−A

2
T

2σ2

)
. (5.2)

Our goal here is to change the signal-dependent nature of Rician noise to a signal-
independent one. Specifically, we are interested in a function fstab : R 7→ R, which transforms
the Rician RV to another RV with a constant variate, i.e., Var {fstab(M |σ)} = 1. More-
over, the new RV fstab(M |σ) should not depend on the noncentrality parameter AT anymore
(Bartlett 1947).

In the most fundamental way, this transform can be found using the first-order Taylor
approximation of fstab(M |σ) about a point M = M0:

fstab(M |σ) = fstab(M0|σ) + (M −M0)
dfstab

dM

∣∣∣∣
M=M0

+R1(M), (5.3)

where R1(M) is the remainder term of the expansion.
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Figure 5.1: (a) The PDF of Rician RV and the normalized histogram of simulated Rician
distributed data with a noncentrality parameter AT = 1.5 and the scale σ = 1. (b) The nor-
malized histogram of noise component retrieved from Rician distributed sample and (c) the
normalized histogram of noise component retrieved from variance-stabilized Rician sample.
The evaluation uses N = 25000 samples and nb = 350 bins for all histograms.

Neglecting the remainder term R1(M) and taking the variance on both sides of eq. (5.3)
result in1:

Var{fstab(M |σ)} ≈ Var{M} ·
(
dfstab

dM

∣∣∣∣
M=M0

)2

. (5.4)

Finally, imposing Var{fstab(M |σ)} = 1 and M0 = Ã, and taking the indefinite integral of
(5.4) we have the general formula of VST for Rician RV (Foi 2011):

fstab(M |σ) =
∫ M 1√

Var{M |Ã, σ}
dÃ, (5.5)

where Var{M |Ã, σ} is the conditional variance of M , i.e., the variance of the RV M is ex-
pressed in the function of the parameter Ã. The formula (5.5) defines the transformation
fstab, which turns the signal-dependent Rician RV into a signal-independent RV i.e., the
RV with a constant and finite variance. Henceforth, the extracted noise component from
Rician distributed data may be considered as AWGN process (e.g., standard normal dis-
tribution N (0, 1)). This is depicted in Fig. 5.1, where the noise component was extracted
from simulated Rician distributed data and the variance-stabilized Rician data. Therefore,
Gaussianity assumptions can be applied at further stages of the data processing pipeline,
e.g., noise estimation, tissue classification.

5.2.2 Foi’s approach

In Foi 2011, the asymptotic stabilizer for Rician distributed RV inferring from the integral
definition (5.5) and the approximation of the conditional variance for large values of AT has
been derived:

fstab(M |σ) =

√
M2

σ2 −
1
2

+ a, a ∈ R, (5.6)

1We use two basic properties of variance operator:

• Var{cM} = c2Var{M} for c ∈ R,

• Var{c+M} = Var{M} for c ∈ R.



5.2. The variance-stabilizing transformation 69

5 10 15 20
-10

-5

0

5

10

15

20

(a)

Ite
ratio

n
-5

-2.5
0

2.5
5

0

1

2

3

4
0

0.1

0.2

0.3

0.4

0.5

stabilized Rician data

non-stabilized
Rician data

The variate of

The variate of

F
re

q
u
e

n
cy

 /
 v

a
lu

e

Data

(b)

Figure 5.2: (a) The conditional variance of Rician RV Var {M |AT , σ} for different values of σ.
The solid lines present the theoretical variance (5.2), while dashed lines show the approxima-
tion of the conditional variance for larger values of AT (5.7). (b) The results of the iterative
stabilization scheme (5.9) for stationary Rician distribution. The variate of the stabilized
Rician data follows standard normal distribution N (0, 1).

where M ­
√

2
2 σ and a ∈ R is an arbitrary constant. The conditional variance Var {M |AT , σ}

used in the derivation procedure (5.5) is given by (see Fig. 5.2a):

Var {M |AT , σ} ≈ σ2 − σ4

2A2
T

. (5.7)

The transformation (5.6) is correct for higher SNR levels, however, it does not work
satisfactorily for lower SNR (i.e., SNR < 5). To handle low SNRs properly, Foi resorts to nu-
merical models of the stabilizer f obtained from a direct optimization procedure (Foi 2009b).
The optimization procedure incorporates the accuracy of stabilization in terms of standard
deviation, smoothness of the transformation f , proximity of f to (5.6) as M approaches Mmax

and the closeness of the inverse transformation to Rician ML estimate of the parameter AT :

F (f) =
∫ Amax

0

(
std{f(M)|Ã, 1} − 1

)2
dÃ+ λsmooth

∫ Mmax

0

(
d2f

dM̃2

)2

dM̃

+ λasympt

∫ Mmax

0

1

(Mmax − M̃ + ε)4

(
f(M̃)− fstab(M̃ |1)

)2
dM̃

+ λinverse

∫ Mmax

0

(
Vf (f(M̃))− ÂML(M̃)

)2
dM̃, (5.8)

where:

• std{f(M)|Ã, 1} is the standard deviation of the stabilized data M by the function f ,

• ε = 2.0× 10−16 is used to ensure the well-posedness of the solution,

• Vf : E{f(M)|AT , 1} → AT is the exact unbiased inverse for the estimation of AT , where
E{f(M)|AT , 1} is the conditional expectation,

• ÂML is the Rician ML estimate obtained from a single sample M as the solution of the
equation M

AT

I1(ATM)
I0(ATM) = 1 for M >

√
2 and ÂML = 0 for M ¬

√
2,
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• λsmooth ­ 0, λasympt ­ 0, λinverse ­ 0 are the penalty parameters of different factors in
the cost function (5.8).

Note that the cost function f in (5.8) is defined for the finite range of the parameter AT
(i.e., AT ∈ [0, Amax]) and σ = 1. Consequently, the variable M is considered for [0,Mmax]
because of the exponential decay of the PDF (5.1).

The numerically precalculated function f(M) from eq. (5.8) along with the asymptotic
stabilizer fstab(M) (5.6) are iteratively applied to stationary Rician distributed data M

turning it into the equivalent one with standard AWGN component (Fig. 5.2b):σ̂1 = C{M},
σ̂k+1 = σ̂kC{fσ̂k(M)} for k ­ 1,

(5.9)

where fσ̂k is the VST with the noise level parameter σ = σ̂k and C{·} is an estimator of
standard deviation of the data, e.g., MAD estimator.

The approach is computationally intensive, since the stabilization is achieved in the pre-
sented iterative scheme (5.9). Specifically, each k–th iteration of the algorithm requires the
estimation of the parameter σ to stabilize the data M in (k + 1)–th iteration in a more effi-
cient way. Although the method is acceptable for stationary Rician noise as it was originally
proposed, the estimation of the parameter σ locally leads to significant under- or overestima-
tions due to a small number of samples used by MAD estimator. As long as the procedure is
applied for stationary Rician noise (a single value σ), it delivers the state-of-the-art results.
However, applying Foi’s approach to the non-stationary Rician distributed data (like those
observed in SENSE MRI acquisitions) requires the estimation of σ in a local manner. This po-
tential generalization of Foi’s approach leads to a biased estimator of σ, especially near edges
and tissue transitions. For that reason, the Rician data are further incorrectly stabilized, i.e.,
the variate of the transformed data does not exactly follow Gaussian distribution.

5.2.3 Robust numerical model

In this section, we present our proposal of VST for Rician distributed data. We present
a single-shot VST, which overcomes the main problems of conventional stabilizers for Rician
distributed data:

• it does not need an iterative scheme to estimate the parameter σ,

• it stabilizes robustly the data for the whole range of SNRs.

This proposal requires an additional parameter to be estimated namely the local SNR.
Though the inclusion of an additional parameter in the derivation of the stabilizer could
seem an inconvenience, we will show that both the initialization of σ and the estimation of
the SNR per pixel can be efficiently achieved avoiding main problems of other solutions.

Firstly, we start with the parametrization of eq. (5.6) using a vector parameter
Θ = (θ1, θ2) as follows:

fstab(M |σ,Θ) =

√
max

{
θ2

1
M2

σ2 − θ2, 0
}

+ a, a ∈ R, (5.10)

where the operator max{·, ·} avoids a negative argument of the square root function. Note
that for (θ1, θ2) = (1, 0.5) the parametrized eq. (5.10) becomes the asymptotic one (5.6).
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Table 5.1: The parameters of the optimization cost function (5.8) used by Foi 2011.

Model A Model B

λasympt 1 1

λsmooth 10−2 10−4

λinverse 10−
1
2 0

In order to cope with different behaviours of the stabilizer, the parameters θ1 and θ2

should be tuned accordingly to the SNR of the signal M . This can be efficiently achieved by
using a numerical optimization procedure providing θ1 and θ2 as a function of the SNR with
the following optimization criterion:

Θopt = arg min
Θ

J (fstab(M |σ,Θ)) (5.11)

with Θopt = (θ1opt, θ2opt) and J : R2 7→ R being a cost function to be minimized:

J (fstab(M |σ,Θ)) = λ1 · ϕ(1−Var {fstab(M |σ,Θ)})
+ λ2 · ϕ(Skewness{fstab(M |σ,Θ)})
+ λ3 · ϕ(ExcessKurtosis{fstab(M |σ,Θ)}),

(5.12)

where the weighting parameters meet the condition λ1 + λ2 + λ3 = 1 and ϕ : R→ R is a non-
negative convex function, e.g., ϕ(x) = x2.

Secondly, we define the components of (5.12) in terms of r–th raw moments of
fstab–transformed Rician distribution:

Var {fstab(M |σ,Θ)} = m2 −m2
1,

Skewness {fstab(M |σ,Θ)} =
m3 − 3m1m2 + 2m3

1

(m2 −m2
1)

3
2

,

ExcessKurtosis {fstab(M |σ,Θ)} =
m4 − 4m1m3 + 6m2

1m2 − 3m4
1

(m2 −m2
1)2 − 3,

(5.13)

where r–th raw moment for Rician distribution is given by:

mr = E {f rstab(M |σ,Θ)} =
∫ ∞

0
f rstab(M̃ |σ,Θ)p(M̃ |AT , σ)dM̃

=
∫ ∞

0
f rstab(M̃ |σ,Θ)

M̃

σ2 exp

(
−M̃

2 +A2
T

2σ2

)
I0

(
AT M̃

σ2

)
dM̃.

(5.14)

The cost function (5.12) favours a unitary variance, zero skewness and zero excess kurto-
sis2, enforcing the desired Gaussian behaviour of the transformed RV. Note that one can also
resort to additional parameters, which potentially can be used in the optimization cost func-
tion (5.12), e.g., higher order moments or measures of the shape of a probability distribution
like L–moments (Hosking 1992).

The numerical optimization of (5.11) has been carried out for σ = 1 and logarithmically
increasing AT between 0.001 and 20. We used Nelder-Mead optimization method and the
adaptive Gauss-Kronrod quadrature to numerically evaluate the integrals defined by (5.14)
over the interval M ∈ [0; 30] (Nelder and Mead 1965, Shampine 2008).

2The excess kurtosis is defined as ExcessKurtosis {X} = Kurtosis {X}− 3. The kurtosis of a Gaussian RV
equals three.
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Figure 5.3: (a) Optimized parameters θ1opt and θ2opt of eq. (5.12) in terms of SNR
for (λ1, λ2, λ3) = (0.998, 0.001, 0.001), (b) comparison of standard deviations between non-
stabilized Rician distributed data and the stabilized ones using different parameters θ1 and θ2,
and (c) standard deviation of the variance-stabilizing parametric approach fstab(M |σ,Θopt)
compared to Foi’s stabilizers A and B (see the Table 5.1). The parameter σ = 1 is used for
all simulations.

The results of the optimization procedure for (λ1, λ2, λ3) = (0.998, 0.001, 0.001) and the
convex function ϕ(x) = x2 in terms of SNR of the signal (SNR = AT /σ) are shown in
Fig. 5.3a. The set of parameters (λ1, λ2, λ3) for the optimization procedure was found in
an empirical way. We remark that higher values of the parameters λ2 and λ3 lead to a
better fitting process of skewness and excess kurtosis to Gaussian case. However, due to
the trade-off between variance and skewness/kurtosis, the variate of the variance-stabilized
Rician data is no longer unitary. Note that a breakdown point at SNR = 1.171 is observed
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Figure 5.4: General scheme of our proposal in non-stationary Rician noise estimation. The
method requires the prior noise map estimate σ̂0(x) and the SNR map to stabilize the data
(VST block). The red rectangles indicate the interchangeable modules of the algorithm.

for θ2opt. Next, we compare the standard deviations of variance-non-stabilized and variance-
stabilized Rician data including different variants of the parameters θ1 and θ2 (Fig. 5.3b).
For (θ1, θ2) = (1, θ2opt), the accuracy of variance-stabilizing procedure slightly improved in
comparison with asymptotic stabilizer (θ1, θ2) = (1, 0.5), however, the solution is still not
the optimal one at low SNRs (SNR < 1.171). Substantial improvements of the stabilization
results can be observed simultaneously applying the optimized pair of the parameters θ1

and θ2 to eq. (5.10), i.e., (θ1, θ2) = (θ1opt, θ2opt). The results obtained from the proposed
parametric VST are then compared to Foi’s models A and B (Fig. 5.3c, Table 5.1)3. The
new parametric form of VST efficiently achieved the stabilization of the Rician RV for the
whole range of SNRs from very low SNRs – Rayleigh RV to very high SNRs – Gaussian RV.

The strong point of our proposal is that the stabilization of the data is obtained in a single-
shot, i.e., the data are transformed in a non-iterative way. To apply the transformation fstab

on a real MR image we need a prior noise map σ0(x) and the local SNR of the image SNR(x).
Since the main application of the VST in this work is the noise estimation, the monotonicity
of the function fstab is not required. Finally, we remind, although the comparison with Foi’s
models was carried out for stationary Rician distributed data, our proposal will be employed
for non-stationary Rician distributed images (see section 5.3.1).

5.3 Non-stationary Rician noise estimation

In this section, we define the spatially variant noise estimation scheme for non-stationary
Rician data using the proposed VST framework. To our best knowledge, the VST has not
been used in any form in context of modelling the non-stationary signal-dependent Rician
noise.

5.3.1 Spatially variant Rician noise estimation

We propose a new methodology to estimate the non-stationary Rician noise following the
pipeline presented in Fig. 5.4.

The first step of the process is the application of the parametric VST (5.10) to the magni-
tude MR image. The VST transforms signal-dependent Rician data to a signal-independent
Gaussian-like equivalent. Once the data are stabilized, we can use a non-stationary Gaussian
noise estimator to extract the local noise level from the image. In this work, we will make use
of the Gaussian homomorphic approach, recently proposed in Aja-Fernández et al. 2015b,
since it has proved its accuracy and robustness.

3The MATLAB source code of the variance-stabilizing transformation proposed by Foi is available at
http://www.cs.tut.fi/~foi/RiceOptVST/.

http://www.cs.tut.fi/~foi/RiceOptVST/
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Firstly, the above-mentioned parametric VST is applied pointwisely to the raw noisy
magnitude MR image M(x) as follows:

M̃(x) = σ̂0(x) · fstab(M(x)|σ̂0(x), θ1opt(x), θ2opt(x)), (5.15)

where σ̂0(x) is the prior (pre-estimated) noise map, θ1opt(x) and θ2opt(x) are the optimized
to local SNR transformation parameters:

θ1opt(x) = (θ1 ◦ SNR)(x),

θ2opt(x) = (θ2 ◦ SNR)(x)
(5.16)

with the pointwise SNR defined as:

SNR(x) =
AT (x)
σ(x)

. (5.17)

Using the formula (5.10) and assuming a = 0, we can express eq. (5.15) as follows:

M̃(x) = σ̂0(x)

√√√√√max

θ2
1opt(x)

M2(x)

σ̂2
0(x)

− θ2opt(x), 0

, (5.18)

where M̃(x) is the variance-stabilized MR image multiplied by the initial noise map estimate

σ̂0(x). Henceforth, the transformed image (5.18) can be assumed as a noise-free component
ÃT (x) corrupted with additive Gaussian distributed noise N(x; 0, σ2(x)) with zero mean and
spatially variant variance σ2(x):

M̃(x) ≈ ÃT (x) +N(x; 0, σ2(x)) = ÃT (x) + σ(x) ·N(x; 0, 1). (5.19)

In the second stage of the noise estimation algorithm, we need to separate the low-
frequency component σ(x) from (5.19). Earlier, however, we remove a DC component (center
the data) from the signal M̃(x) (5.19):

M̃C(x) = M̃(x)− E{M̃(x)} = σ(x) ·N(x; 0, 1), (5.20)

where E {·} is the expectation operator applied to the variance-stabilized image, e.g., an
edge preservation low-pass filter (see section 5.3.3 for details). Next, we resort to the ho-
momorphic filtering principle for multiplicative components (Aja-Fernández et al. 2015b).
Specifically, we apply the transformation g(x) = log x to (5.20), separate the low-frequency
noise map and finally return to the spatial domain of the image using inverse transformation
g−1(y) = exp(y). So, we apply g to the absolute value of the centered data (5.20) and then
we separate the components as follows:

log |M̃C(x)| = log |σ(x) ·N(x; 0, 1)| = log σ(x)︸ ︷︷ ︸
low frequency

+ log |N(x; 0, 1)|︸ ︷︷ ︸
high frequency

. (5.21)

Since the multiplicative character of noise (5.20) can be represented as two additive compo-
nents in log domain (5.21), we resort to low-pass filter LPFσf to clear out the high-frequency
contribution of log |N(x; 0, 1)|:

LPFσf

{
log

∣∣∣M̃C(x)
∣∣∣} ≈ log σ(x)− LPFσf {log |N(x; 0, 1)|} , (5.22)

where LPFσf {log |N(x; 0, 1)|} ≈ E {log |N(x; 0, 1)|}. Considering that |N(x; 0, 1)| follows
a half-Gaussian distribution and assuming that the low-pass filter LPFσf is a good approxi-
mation of the mean, we can write:

LPFσf

{
log

∣∣∣M̃C(x)
∣∣∣} ≈ log σ(x)− log

√
2− γ

2
(5.23)
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Figure 5.5: Estimated local SNR maps from synthetic noisy T1-weighted MR image (top row)
and absolute differences between the ground truth and the estimated SNR maps (bottom
row): (a) the ground truth, (b) DeVore et al. 2000, (c) Koay and Basser 2006, (d) our
proposal. The estimation is carried out in 5× 5 windows. The maximum SNR of the noisy
MR image in the foreground area equals SNRmax = 10.64.

with γ being the Euler-Mascheroni constant. After some basic rearrangements of (5.23) we
have:

LPFσf

{
log

∣∣∣M̃C(x)
∣∣∣}+

γ

2
≈ log

(
σ(x)√

2

)
. (5.24)

Finally, the inverse transformation g−1(y) = exp(y) of (5.24) leads to a new spatially
variant Rician noise estimator defined by the formula:

σ̂(x) =
√

2 exp
(

LPFσf

{
log

∣∣∣M̃C(x)
∣∣∣}+

γ

2

)
. (5.25)

with LPFσf being a low-pass Gaussian filter with a standard deviation σf.

5.3.2 SNR estimation

The reliable estimation of local SNR is a key issue of our proposal of spatially variant
Rician noise estimation. Both factors of the SNR definition (5.17) namely AT (x) and σ(x)
can be estimated simultaneously using EM algorithm as demonstrated in DeVore et al.
2000 (see section 4.3.1 for more details). This approach is characterized by a high level of

granularity of the estimated parameters ÂT (x) and σ̂(x), thus, it leads to significant under-

and overestimations of the division ÂT (x)/σ̂(x). In this work, however, we use a local mean of

the magnitude image M(x) as the estimate of the underlying signal, ÂT (x). Then, we employ
the method proposed by Aja-Fernández et al. 2015b to obtain the estimate of a prior noise
map, σ̂0(x). This simple strategy avoids granularities of the SNR map, usually observed
with DeVore et al. 2000 or Koay and Basser 2006, and it provides a more realistic SNR
representation (Fig. 5.5).

5.3.3 Noise extraction procedures

Last but not least, it is important to choose a right centering procedure of the variance-
stabilized data in (5.20). One straightforward approximation would be the local average in
a neighborhood, as was recently shown in Aja-Fernández et al. 2015b. However, this method
is prone to provide inaccurate estimates due to the presence of tissue inhomogeneities within
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Figure 5.6: Coefficients of a decomposition high-pass filter (db7) used in 2D SWT to center
the data (filtering process of the variance-stabilized image along the rows and columns).

the local window. Once again, different methods from literature could be used here. In this
work, we employ two approaches: the edge-preserving bilateral filter for grayscale images
(Tomasi and Manduchi 1998) and 2D SWT (Mallat 2008). One can also apply other edge-
preserving and AWGN-compliant methods like non-local means filter (Buades et al. 2005) or
recent advances in this field, e.g., robust guided filter (He et al. 2013) or strengthen-operate-
subtract methodology (Romano and Elad 2015).

The first method used in our proposal, namely the bilateral filter, is applied to the
magnitude of variance-stabilized MR image M̃(x) as follows:

Ψ(x) =

∑
p∈η(x) ψσg(‖p− x‖)ψσr(|M̃(p)− M̃(x)|)M̃(p)∑

p∈η(x) ψσg(‖p− x‖)ψσr(|M̃(p)− M̃(x)|)
, (5.26)

where η(x) is a neighbourhood centered at the pixel x, ψσg and ψσr are geometric and
radiometric distances, respectively. In the basic variant of the algorithm, ψσg and ψσr are
defined to be:

ψσ(x) = exp

(
− x2

2σ2

)
, (5.27)

where σ is the scale parameter (standard deviation). Therefore, the results of the filtering
procedure (5.26) can be subtracted from the noisy variance-stabilized image M̃(x) as follows:

M̃C(x) = M̃(x)−Ψ(x). (5.28)

The centering of the data can alternatively be done by the SWT, since it extracts the
noise component from M̃(x) using the HH subband of the SWT of the image at the first
scale (Mallat 2008). Specifically, to extract the noise component from the image M̃(x) we
refer to diagonal details coefficients of the SWT decomposition:

M̃C(x) = ((M̃ ~ g(r))~ g(c))(x), (5.29)

where “~” denotes the convolution operator. The convolution procedure (5.29) is performed
with separable one-dimensional high-pass filter g (see Fig. 5.6), i.e., the first convolution is
applied along the rows g(r), and the second one is applied along the columns g(c) of the
image.
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5.4 Materials and methods

In this section, we present the MRI data and spatially variant noise patterns used for the
numerical experiments.

(d) (e) (f)

(a) (b) (c)

(g) (h) (i)

Figure 5.7: Data sets used in the experiments: (a) synthetic noise-free T1-, (b) T2- and (c) PD-
weighted MRI data, (d) simulated noisy T1-, (e) T2- and (f) PD-weighted SENSE MRI data
(all with r = 2), (g) real noisy T1-weighted TFE SENSE MRI phantom (r = 2), (h) real
noisy T2-weighted TSE SENSE MRI brain data (r = 4) and (i) real noisy T2-weighted FFE
SENSE MRI brain data (r = 4).
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Figure 5.8: Sensitivity maps used to generate synthetic SENSE MRI data from eight receiver
coils (see Fig. 5.7d–f).
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Figure 5.9: Spatially variant noise patterns used in the experiments for synthetic MRI data.

5.4.1 Materials

To verify our proposal in non-stationary Rician noise estimation, we carry out some numerical
experiments using both synthetic and real MRI data. Below, we provide a brief description
of the data sets used in our experiments.

1. Synthetic MR images: three brain MRI slices at different transverse planes are used, i.e.,
T1-, T2- and PD-weighted MRI data (all with intensity non-uniformity INU=0%). The
data are free of noise, the background areas are set to zero, the slice thickness equals
1 mm and the intensity range of the images is normalized to [0 – 255] (Fig. 5.7a–c).
The synthetic data sets come from BrainWeb simulated database (Collins et al. 1998).

2. Synthetic SENSE MR images4: synthetic noisy T1-, T2- and PD-weighted MR images
from BrainWeb are used to simulate Cartesian SENSE MRI reconstructions from eight
receiver coils (L = 8) with correlations between k–th and l–th receiver coil (k 6= l)
defined to be ρkl = ρ, the variance of the noise set to σ2

l (x) = σ2
l (the correlations

and the noise level are the same for all L coils) and SENSE reduction factor set to
r = 2 (Fig. 5.7d–f). The sensitivity maps used for Cartesian SENSE reconstruction are
depicted in Fig. 5.8.

3. Real SENSE MRI phantom data: twenty repetitions of T1-weighted scan of a doped
ball phantom were performed using Philips Achieva 3.0T TX device (Philips Medical
Systems, Best, the Netherlands) provided with a 32-channel coil system using Turbo
Field Echo (TFE) sequence5, volume size 224 × 224 × 59, TR=5.264 ms / TE=2.569
ms, slice thickness 3.20 mm, and reduction factor r = 2 (Fig. 5.7g).

4. In vivo SENSE MRI brain data: two T2-weighted scans of the brain in transverse planes
were acquired by Philips Achieva 3.0T TX scanner provided with the 32-channel head
coil. The first data set was acquired using Fast Field Echo (FFE) sequence6, volume
size 240 × 180 × 161, TR=3000 ms / TE=80 ms, slice thickness 3.20 mm (Fig. 5.7h),
while the second one was obtained using Turbo Spin Echo (TSE)7 (Fig. 5.7i). The
k–space was subsampled by the reduction factor r = 4 for both acquisitions.

The background areas of real SENSE MRI data have been automatically suppressed by
the scanner during the acquisition process (see Figs. 5.7g–i).

4We used Aja-Fernández’s parallel MRI simulator available at https://www.mathworks.com/
matlabcentral/fileexchange/36893-parallel-mri-noisy-phantom-simulator.

5TFE is the vendor acronym for Ultrafast Gradient Echo sequence (Philips).
6FFE is the vendor acronym for Gradient Echo sequence (Philips).
7TSE is the vendor acronym for Fast Spin Echo sequence (Philips).

https://www.mathworks.com/matlabcentral/fileexchange/36893-parallel-mri-noisy-phantom-simulator
https://www.mathworks.com/matlabcentral/fileexchange/36893-parallel-mri-noisy-phantom-simulator
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5.4.2 Spatially variant noise maps

In the first two synthetic noise estimation experiments, we simulate spatially variant noise
patterns as shown in Fig. 5.9. These noise patterns are typically observed in accelerated
parallel MRI acquisitions of the brain (Landman et al. 2009b, Manjón et al. 2010, Aja-
Fernández et al. 2014a). To generate the synthetic MR image, we add complex Gaussian
noise to the x–space domain of noise-free MRI phantom, and then, we reconstruct the final
magnitude noisy image M(x) as follows:

M(x) = |Are(x) +Nre(x) + j · (Aim(x) +Nim(x))| , (5.30)

where Nre(x), Nim(x) ∼ N
(
0, σ2(x)

)
are uncorrelated Gaussian distributed noise compo-

nents with scale parameter σ2(x) varying across the image and Are(x), Aim(x) are the com-
ponents of the noise-free MRI data.

5.4.3 The state-of-the-art methods and our proposal

For the sake of comparison, we used fourteen spatially variant noise estimation methods
presented in section 4.3.1. These methods estimate the noise map σ(x) from a single MR
image M(x) wihout any additional information from the acquisition process. Moreover, we
employed four methods (section 4.3.2), which estimate the noise map σ(x) from multiple
scans of the same object. The methods are treated as silver standard references, and they
are applied for those experiments, where multiple repetitions are available.

Regarding our proposal, we set the following parameters in the evaluation process:

• SNR estimation is carried out in 5× 5 windows,

• bilateral filter (5.26) uses 5× 5 windows, ψσg = 15, ψσr = 120,

• SWT (5.29) uses the db7 wavelet,

• the low pass filter (5.25) uses σf = 3.4 to generate circularly symmetric Gaussian mask.

Finally, note that we used morphological operators for the detection procedure of the
foreground area of the image (see section 4.4 for more details).

5.5 Experimental results and discussion

In this section we evaluate our proposal against the aforementioned state-of-the-art tech-
niques in non-stationary Rician noise estimation. We carry out several experiments including
both synthetic and real MRI data presented in section 5.4.1.

5.5.1 Statistical analysis of the underlying assumption

Before testing the quantitative and qualitative performance of proposed noise estimation
method, we verified the underlying assumption of Gaussianity of the variate after stabilizing
Rician distributed signal. To extract the noise component from the variance-stabilized Rician
signal, we employed SWT decomposition with high-pass filter related to db7 wavelet (see
Fig. 5.6). We carried out three statistical experiments on variance-stabilized Rician data:

1. Chi-square goodness-of-fit test (χ2–test),

2. Anderson-Darling (AD) normality test,

3. Quantile-quantile (QQ) plot.
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Figure 5.10: The evaluation scheme of the noise component in variance-stabilized Rician data
for a given SNR level (SNR = AT /σ) using a statistical hypothesis testing.
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Figure 5.11: Statistical tests for noise component in variance-stabilized Rician distributed
signal: (a) acceptance ratio of null hypothesis H0 in χ2–test that the noise in variance-
stabilized signal follows standard normal distribution (three significance levels are used in
the experiment α ∈ {0.05, 0.01, 0.001}) and (b) acceptance ratio of the AD normality test of
the noise component at the significance level α = 0.05.

In the first statistical experiment, we calculate the acceptance ratio of χ2–test8. The
null hypothesisH0 states that the noise in variance-stabilized Rician distributed signal follows
standard normal distribution, while the alternative hypothesis H1 is the opposite. We repeat
χ2–test over 10000 iterations for each SNR step with sample size N = 256, and then we calcu-
late the acceptance ratio of H0 for each SNR level individually. The scheme of the experiment
is summarized in Fig. 5.10. Three significance levels are used α ∈ {0.05, 0.01, 0.001}. The re-
sults of the experiment exhibit increased acceptances of the hypothesis H0 (for SNR < 3)
using proposed VST in comparison with Foi’s model B (Fig. 5.11a). The acceptances of H0

8The routine chi2gof is used in the simulation (The MathWorks, Inc., Natick, MA).
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(a) (b) (c)

Figure 5.12: Quantile-Quantile plots of the stabilized noise component in Rician distributed
signal using the proposed VST for different SNRs of the signal: (a) SNR = 1, (b) SNR = 2
and (c) SNR = 3. The red lines indicate the reference function y = x.

for our proposal reach at least 92%, 97.56%, 99.46% for α = 0.05, α = 0.01 and α = 0.001,
respectively. Note that we apply only Foi’s model B for the clarity of the figures, since the
model A presents much worse behaviour than the model B (compare to Fig. 5.3c).

Since χ2–test is applied to binned data, it requires sufficiently large samples for an ad-
equate convergence to a χ2 distribution and it depends on selected number of bins nb, e.g.,
nb = 1 + log2N , where N is the sample size. In the second statistical experiment, we
employ AD test9 to verify if the noise component in variance-stabilized Rician signal come
from standard normal distributed population (see Fig. 5.10). The same statistical hypotheses
H0 and H1 are used as in χ2–test. The results of AD test for the significance level α = 0.05
are depicted in Fig. 5.11b. Again, our proposal overcomes Foi’s model B for low SNR and it
attains at least 99.1% of H0 acceptances.

Finally, in the third statistical experiment, we show QQ plot for the noise component
in variance-stabilized Rician distributed data for a sample with N = 256 and SNR ∈ {1, 2, 3}
(Fig. 5.12). We relate quantiles of standard normal distribution (horizontal axis) to the
quantiles of the noise component extracted from variance-stabilized Rician distributed data
(vertical axis). As we can see, the points obtained from QQ experiment approximately lie on
the reference line y = x, i.e., the noise in variance-stabilized Rician signal follows standard
normal distribution.

The results obtained from three statistical experiments assure us that:

1. the assumption of normality of the noise component in variance-stabilized Rician signal
by the proposed method holds for low SNRs,

2. Gaussian-dedicated methods like the SWT can be employed to recover the noise com-
ponent from variance-stabilized Rician data,

3. post-correction factors proposed by Koay and Basser 2006, Manjón et al. 2015 and
Aja-Fernández et al. 2015b are no longer required for Rician distribution.

9The routine adtest is used in the simulation (The MathWorks, Inc., Natick, MA).
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Figure 5.13: Influence of SNR mismatch on standard deviation of variance-stabilized Rician
data for Θopt = (θ1opt, θ2opt) (5.31). The red dashed line indicates the breakdown point of
the parameter θ2opt (defined as in eq. (5.16)) at SNR = 1.171 (see also Fig. 5.3a).

5.5.2 Analysis of SNR mismatch on VST procedure

In this section, we study the influence of SNR mismatch on the accuracy of the variance-
stabilizing process. To this end, we generate stationary Rician distributed images of size
256 × 256 with SNRs between SNR = 0 and SNR = 5. We apply the proposed VST (5.10)
with Θopt, which is optimized to the intentionally modified SNRs between −40% and +40%
of the original value. We define θ1opt and θ2opt in this experiment to be:

θ1opt(x) = (θ1 ◦ SNRmodified)(x),

θ2opt(x) = (θ2 ◦ SNRmodified)(x)
(5.31)

with the modified pointwise SNR given by SNRmodified(x) = p · SNR(x) for p ∈ [0.6; 1.4].
The results of the experiment are depicted in Fig. 5.13. The contour plot presents

over-/underestimation of the sample standard deviation of variance-stabilized Rician data.
We relate the underlying SNR (horizontal axis) to the SNR mismatch (SNRmodified), which
is subsequently used to obtain the parameters θ1opt and θ2opt from eq. (5.31). As we ex-
pected, the accuracy of the stabilization process for low SNR depends on the precision of the
estimated SNR level. For positive (negative) SNR mismatch, some underestimations (over-
estimations) of the sample standard deviation are observed in the variance-stabilized Rician
data. Note that the experiment shows that a ±20% of SNR mismatch produces around 5%
of error in the standard deviation of the stabilized data. Interestingly, the proposed VST is
very robust for SNR > 3.5 against ±40% SNR mismatch, where the error of the stabilized
standard deviation is less than 0.25%.

5.5.3 Robustness analysis of the proposed algorithm

In this section, we analyse the robustness of the proposed variance-stabilizing homomorphic
filter. Before, however, we present the qualitative results from the stabilization process and
we evaluate different procedures used to extract the noise component from synthetic brain
MRI data. Then, we study the state-of-the-art methods, which potentially can be employed
to obtain the noise map estimate σ̂0(x). The initial noise map σ̂0(x) is used then to stabilize
the noisy MRI data as shown in Fig. 5.4.
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(a) Noisy data (non-stationary Rician noise follows the noise pattern from Fig. 5.9a)

(I) (II) (III) (IV)

(b) Noisy data (non-stationary Rician noise follows the noise pattern from Fig. 5.9a) – negative image
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(c) Variance-stabilized data using our proposal
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(d) Variance-stabilized data using our proposal – negative image

Figure 5.14: (a, b) The noisy non-stationary Rician distributed data and (c, d) the corre-
sponding variance-stabilized equivalents using the proposed VST: (I) non-stationary Rayleigh
noise (SNR = 0), (II) synthetic T1-, (III) T2- and (IV) PD-weighted brain MRI data. Note
that we provide negatives of the noisy images, which might be more visually acceptable
rather than the orginal images.

In the first robustness test, we visually relate noisy non-stationary Rician distributed
data to the variance-stabilized equivalents using the proposed approach (Fig. 5.14). We
generate the non-stationary Rician data using synthetic T1-, T2- and PD-weighted brain
MRI data sets and the noise pattern from Fig. 5.9a. The reconstruction of the magnitude
Rician data follows eq. (5.30). The proposed VST stabilizes the magnitude data even if
the underlying signal amplitude equals zero, i.e., the data follows a non-stationary Rayleigh
distribution (Fig. 5.14I).
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Figure 5.15: Noise components retrieved from synthetic (I) T1-, (II) T2- and (III) PD-weighted
brain MRI data: (a) local mean (Aja-Fernández et al. 2015b), (b) local EM algorithm (Aja-
Fernández et al. 2015b), (c) edge-preservation bilateral filter, (d) HH subband of the SWT
of the image (Aja-Fernández and Vegas-Sánchez-Ferrero 2015), (e) VST + edge-preservation
bilateral filter (proposed) and (f) VST + HH subband of the SWT (proposed). All images
represent absolute value of the noise component. The maximum SNR of the foreground area
equals SNRmax = 5.63, SNRmax = 5.14 and SNRmax = 5.50 for T1-, T2- and PD-weighted
data, respectively.
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Table 5.2: Averaged relative errors of the proposed noise estimation scheme with different
state-of-the-art techniques used to initialize σ0(x) in eq. (5.18). The columns “w/o VST”
(without VST) present the errors of state-of-the-art methods, while the columns “w VST”
(with VST) relate to our proposal initialized by state-of-the-art methods. The last record

presents an ideal estimate σ̂0(x) = σ(x). The best performance for each SNRmax is in bold
letters.

Method used to SNRmax = 5.63 SNRmax = 8.71 SNRmax = 11.79 SNRmax = 14.87
estimate σ0(x) w/o VST w VST w/o VST w VST w/o VST w VST w/o VST w VST

DeVore et al. 2000 0.1763 0.0477 0.1910 0.0441 0.2331 0.0446 0.2955 0.0453
Goossens et al. 2006 0.2276 0.0552 0.2073 0.0493 0.2001 0.0481 0.1974 0.0451
Delakis et al. 2007 0.1682 0.0453 0.2115 0.0459 0.2388 0.0448 0.2616 0.0441
Landman et al. 2009a 0.1853 0.0523 0.1635 0.0480 0.1554 0.0468 0.1535 0.0437
Manjón et al. 2010 0.1325 0.0456 0.1285 0.0420 0.1248 0.0423 0.1221 0.0403
Rajan et al. 2011 0.2004 0.0583 0.1689 0.0507 0.1583 0.0460 0.1773 0.0457
Pan et al. 2012 0.2507 0.0609 0.1861 0.0516 0.1524 0.0493 0.1302 0.0454
Maggioni and Foi 2012 0.1915 0.0557 0.1217 0.0481 0.0919 0.0466 0.0820 0.0435
Maximov et al. 2012 0.1971 0.0460 0.2083 0.0448 0.2212 0.0445 0.2365 0.0436
Liu et al. 2014 0.2704 0.0462 0.2711 0.0464 0.2686 0.0441 0.2671 0.0435
Borrelli et al. 2014 0.1129 0.0453 0.1162 0.0419 0.1192 0.0425 0.1208 0.0403
Tabelow et al. 2015 0.1568 0.0618 0.1083 0.0556 0.0990 0.0542 0.1020 0.0503
Manjón et al. 2015 0.0915 0.0464 0.0738 0.0431 0.0692 0.0437 0.0665 0.0413
Aja-Fernández et al. 2015b 0.1248 0.0451 0.1090 0.0410 0.0930 0.0415 0.0765 0.0390

σ̂0(x) = σ(x) – 0.0417 – 0.0395 – 0.0411 – 0.0387

In the second robustness test, we visually compare noise components extracted from
variance-non-stabilized and variance-stabilized T1-, T2-, and PD-weighted brain MR images.
To this end, we generate noisy images as in eq. (5.30) using the spatially variant noise pattern
from Fig. 5.9a. Following the underlying assumptions, the proposed VST should change
the character of signal-dependent Rician noise to AWGN equivalent and therefore it should
enable to apply Gaussian-dedicated noise extraction procedures like the SWT decomposition.
In Figs. 5.15a–d, we show the noise components, which were retrieved from variance-non-
stabilized MR images, while in Figs. 5.15e,f we present the noise components extracted from
variance-stabilized images. Introducing the VST visibly improved the performance of noise
extraction procedures. Moreover, variance-non-stabilized approaches not only underestimate
the noise in low SNR areas, but they also lead to the intensification of the noise component
near skull edges.

Finally, in the third robustness test, we use fourteen state-of-the-art methods pre-
sented in section 4.3.1 to study the influence of the initial estimate σ̂0(x) on the final noise
map σ̂(x). To carry out the evaluation process, we use synthetic T1-weighted brain MR
image, four SNRmax levels (5.63, 8.71, 11.79, 14.87) and R = 100 repetitions of the exper-
iment for each SNRmax level. The REs (see section 4.4 for more details) of the proposed
noise estimation scheme are compared to the state-of-the-art in Table 5.2. The proposal is
able to estimate the final noise map σ̂(x) even if the prior noise estimation step gives the
relative error around 0.2− 0.3. Moreover, the RE of our proposal is nearly constant among
all verified methods and SNRmax levels, obtaining the accuracy of 5%, close to the error
that would be achieved with an ideal estimate σ̂0(x) = σ(x). Note that the highest RE
obtained with our proposal is always lower than the best results got with any of
the state-of-the-art method. This means that almost any estimation approach presented
in section 4.3.1 can be effectively employed to provide the initial guess σ̂0(x). Based on the
experimental results, we plug Aja-Fernández et al. 2015b into the initialization step for our
proposed methodology (Fig. 5.4).
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Although we are not obligated to use the method proposed by Aja-Fernández et al. 2015b,
we decided to employ it for two reasons:

1. it gives a reasonable results over all verified SNRmax levels,

2. the algorithm is computationally tractable.

5.5.4 Synthetic MRI data experiments

In this section, we evaluate our proposal using synthetic T1-, T2- and PD-weighted brain
MRI data from BrainWeb database (see section 5.4.1 for more details).

As the first noise estimation experiment we quantitatively contrast the proposed
noise estimation algorithm to the state-of-the art methods from section 4.3.1. We add spa-
tially variant complex noise to the noise-free T1-, T2- and PD-weighted MR images and then
we reconstruct the final envelopes of the images following the model given by eq. (5.30).
The noise patterns from Fig. 5.9 are employed to evaluate the performance of the estima-
tors in the function of maximum SNR of the foreground area Ω∆, SNRmax. Note that the
upper bounds of the noise patterns were scaled for all contrast type data individually. This
enables to reflect correct changes of SNRmax over all noise patterns and then to average the
results. One hundred repetitions (R = 100) of the experiment are considered for each noise
pattern and single SNRmax value except computationally intensive Rajan’s method where
only ten repetitions are performed (see Fig. 4.5 for the explanation of the averaging proce-
dure). Exact SNR maps are known beforehand for this experiment and they are defined as
SNR(x) = AT (x)/σ(x).

The averaged results for the third noise pattern from Fig. 5.9 are shown in Fig. 5.16.
The local methods (DeVore et al. 2000, Delakis et al. 2007, Maximov et al. 2012 and Liu
et al. 2014) mostly give poor results in terms of spatially averaged parameters RE(x) and
VAR(x) (RE and VAR) over all contrast type data. The parameter RE of these estimators
is unacceptable, since it exceeds the value of RE = 0.2 for SNRmax > 10. On the other
hand, Goossens et al. 2006 yield almost fixed values of RE and VAR for SNRmax > 10
as a consequence of AWGN assumptions of the estimator. The highest precision among
all local methods is achieved through robust Qn estimator (Landman et al. 2009b). We
remind here that methods by Landman et al. 2009b and Maximov et al. 2012 have been
initially proposed to deal with repeated acquisitions and they do not show their considerable
potential like in a voxelwise estimation. Note that Liu et al. 2014 is clearly outperformed by
the proposed methodology, even though both Liu et al. 2014 and our proposal make use of
the HH subband of the SWT of the image. This confirms the importance of the variance-
stabilizing transformation prior to the noise estimation in non-stationary Rician distributed
data.

The second group of the verified algorithms are non-local estimators arranging patch-
based calculations. The leading role in this field plays Manjón et al. 2015, though, it is
characterized by biased estimates for the images with low SNRmax. The results obtained
from Manjón et al. 2015 can be even improved using stacked data. Nevertheless, since the
acquisition of real MRI data is performed in 2D, the noise map is different for each slice.
Therefore, the noise estimation methodology, which takes the consecutive slices into account,
is valid for synthetic MRI data only. We pay a special attention to Borrelli et al. 2014, which
is characterized by close to constant RE and VAR regardless of SNRmax level. Other non-local
methods (i.e., Manjón et al. 2010, Maggioni and Foi 2012) along with Pan et al. 2012, Borrelli
et al. 2014, Tabelow et al. 2015 and Manjón et al. 2015 are characterized by an extremely
low VAR parameter. Consequently, they are preferred for adaptive denoising procedures of
non-stationary Rician distributed data.
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Figure 5.16: Comparison of noise estimators for synthetic MRI data contamined by non-
stationary Rician noise following eq. (5.30) in the function of SNRmax for the third noise
pattern from Fig. 5.9. First column: spatially averaged relative error RE of the estimators;
Second column: spatially averaged variance VAR of the estimators; Third column: the param-
eter VAR from the second column zoomed to the range [0− 0.01]. The first row corresponds
to T1-, the second row to T2- and the third one to PD-weighted MRI data.

Regarding the proposed spatially variant Rician noise estimation scheme, the results
show the outstanding performance of the method for the whole range of SNRs. Our proposal
provides nearly constant RE and VAR over all SNRmax levels, considerably lower than any
other the state-of-the-art method. As we expected, the results of our proposal meet those
from Aja-Fernández et al. 2015b for sufficiently high values of SNRmax (usually around
SNRmax = 20).

Eventually, we point out that the examined methods show consistent results over spatially
variant noise patterns from Fig. 5.9 and all contrast type data, i.e., T1-, T2- and PD-weighted
MRI. The results from another experiment, where the parameters RE and VAR are averaged
over all noise patterns are shown in Fig. 5.17.
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Figure 5.17: Comparison of noise estimators for synthetic MRI data contamined by non-
stationary Rician noise following eq. (5.30) in the function of SNRmax. Each plot presents
the averaged results over all synthetic noise maps from Fig. 5.9. First column: spatially
averaged relative error RE of the estimators; Second column: spatially averaged variance
VAR of the estimators; Third column: the parameter VAR from the second column zoomed
to the range [0− 0.01]. The first row corresponds to T1-, the second row to T2- and the third
one to PD-weighted MRI data.

Table 5.3: The parameters of synthetic MRI reconstructions used in the second experiment:
noise pattern from Fig. 5.9, the variability degree of the underlying noise map σ(x) and the
maximum SNR of the image in the foreground area, SNRmax. The noise estimation results
are shown in corresponding Figs. 5.18–5.20.

T1-weighted T2-weighted PD-weighted

Noise pattern first third fourth

σ(x) [5− 20] [8− 20] [12− 20]

SNRmax 8.73 7.49 8.09



5.5. Experimental results and discussion 89

In the second experiment, we focus on the qualitative evaluation of the estimators.
The synthetic T1-, T2- and PD-weighted MR images are contamined by spatially variant
noise following the model (5.30). Exact SNR maps are a priori known for the experiment.
All the parameters used to simulate the artificial noise are included in Table 5.3.

The estimated noise maps and relative errors of the methods coming from this experiment
are shown in Figs. 5.18–5.20. The local methods (DeVore et al. 2000, Delakis et al. 2007,
Maximov et al. 2012, Liu et al. 2014, Goossens et al. 2006, Landman et al. 2009b) exhibit
spatial granularities of the estimated noise maps due to the noise level calculations in fixed
neighbourhoods, i.e., 5× 5 windows (Fig. 5.18–5.20a–f).

In contrast to local methods, Manjón et al. 2010 and Maggioni and Foi 2012 use patch-
based estimation, which leads to less granular and more reliable results (Fig. 5.18–5.20g, j).
The similar results were obtained from Pan et al. 2012 with the advantage of a much less com-
putational cost than the patch-based methods (Fig. 5.18–5.20i). Recent advances in spatially
variant Rician noise estimation (Borrelli et al. 2014, Tabelow et al. 2015, Manjón et al. 2015)
additionally carry out a post-relaxation step of the raw estimates (Fig. 5.18–5.20k–m). These
methods yield fairly smoothed and reliable noise maps, though, the high-frequency compo-
nents of the image (i.e., skull edges) are still observed (Fig. 5.18l, Fig. 5.19k, Fig. 5.20k).

Finally, Aja-Fernández et al. 2015b and our proposal provide granular-free noise estimates
and they get rid of high-frequency components from the image at all (Fig. 5.18–5.20n, o).
Some underestimations can be observed in Aja-Fernández et al. 2015b, especially in low SNR
areas, nevertheless, the global patterns are reproduced correctly. Our proposal compensates
these underestimations and provides the most reliable representation of underlying noise pat-
terns (Fig. 5.18–5.20o). Moreover, our method can estimate the noise levels for background
regions as well, where the data follow Rayleigh rather than Rician distribution. These im-
provements of our proposal are the consequences of introducing the VST to the conventional
homomorphic filter.

To complete the whole set of experiments with synthetic MRI data, we provide the
third experiment, where the performance of the algorithms is verified for synthetic SENSE
MRI reconstructions. We simulate eight coils (L = 8) SENSE MRI data with subsampling
rate r = 2. The data coming from each coil is contamined by AWGN with σ2

l (x) (see
Table 5.4). Moreover, we introduce correlations between k–th and l–th receiver coil (k 6= l)
to be ρkl. After recovering process of the image using Cartesian SENSE reconstruction, the
magnitude is affected by non-stationary, correlated and signal-dependent Rician noise. In this
experiment, the SNR is not known and it must be estimated by each algorithm individually.

Eventually, we pay attention to the variability degrees of underlying noise maps σ(x)
in the reconstructed images, which varies in a lesser extent than the noise maps from the
previous visual evaluations (see Table 5.4).

Table 5.4: The parameters of synthetic SENSE MRI reconstructions used in the third ex-
periment (see the corresponding Figs. 5.7d–f): σ2

l (x) – the noise level in l–th receiver coil
before the magnitude reconstruction; ρkl – the correlations between k–th and l–th receiver
coil (k 6= l) and the variability degree of the underlying noise map σ(x). The noise estimation
results are shown in Figs. 5.21 and 5.22.

T1-weighted T2-weighted PD-weighted

σ2
l (x) 75 225 175

ρkl 0.2 0.05 0.3

σ(x) [18.77− 22.26] [35.20− 36.69] [27.03− 35.03]
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Figure 5.18: Visual inspection of the methods for synthetic T1-weighted MRI brain data
distorted by non-stationary Rician noise following eq. (5.30) with SNRmax = 8.73 (top figure)
and corresponding relative errors RE(x) of the estimators (bottom figure). (I) A reference
noise map and (II) noisy image following eq. (5.30). Examined methods: (a) DeVore et al.
2000, (b) Delakis et al. 2007, (c) Maximov et al. 2012, (d) Liu et al. 2014, (e) Goossens et al.
2006, (f) Landman et al. 2009b, (g) Manjón et al. 2010, (h) Rajan et al. 2011, (i) Pan et al.
2012, (j) Maggioni and Foi 2012, (k) Borrelli et al. 2014, (l) Tabelow et al. 2015, (m) Manjón
et al. 2015, (n) Aja-Fernández et al. 2015b and (o) our proposal.
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Figure 5.19: Visual inspection of the methods for synthetic T2-weighted MRI brain data
distorted by non-stationary Rician noise following eq. (5.30) with SNRmax = 7.49 (top figure)
and corresponding relative errors RE(x) of the estimators (bottom figure). (I) A reference
noise map and (II) noisy image following eq. (5.30). Examined methods: (a) DeVore et al.
2000, (b) Delakis et al. 2007, (c) Maximov et al. 2012, (d) Liu et al. 2014, (e) Goossens et al.
2006, (f) Landman et al. 2009b, (g) Manjón et al. 2010, (h) Rajan et al. 2011, (i) Pan et al.
2012, (j) Maggioni and Foi 2012, (k) Borrelli et al. 2014, (l) Tabelow et al. 2015, (m) Manjón
et al. 2015, (n) Aja-Fernández et al. 2015b and (o) our proposal.
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Figure 5.20: Visual inspection of the methods for synthetic PD-weighted MRI brain data
distorted by non-stationary Rician noise following eq. (5.30) with SNRmax = 8.09 (top figure)
and corresponding relative errors RE(x) of the estimators (bottom figure). (I) A reference
noise map and (II) noisy image following eq. (5.30). Examined methods: (a) DeVore et al.
2000, (b) Delakis et al. 2007, (c) Maximov et al. 2012, (d) Liu et al. 2014, (e) Goossens et al.
2006, (f) Landman et al. 2009b, (g) Manjón et al. 2010, (h) Rajan et al. 2011, (i) Pan et al.
2012, (j) Maggioni and Foi 2012, (k) Borrelli et al. 2014, (l) Tabelow et al. 2015, (m) Manjón
et al. 2015, (n) Aja-Fernández et al. 2015b and (o) our proposal.
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Figure 5.21: Visual inspection of the methods for simulated SENSE MRI data. (I) Ground
truth and silver standard methods along 500 repetitions: (II) DeVore et al. 2000, (III) Max-
imov et al. 2012, (IV) Landman et al. 2009b and (V) Glenn et al. 2015. Examined methods:
(a) DeVore et al. 2000, (b) Delakis et al. 2007, (c) Maximov et al. 2012, (d) Liu et al. 2014,
(e) Goossens et al. 2006, (f) Landman et al. 2009b, (g) Manjón et al. 2010, (h) Rajan et al.
2011, (i) Pan et al. 2012, (j) Maggioni and Foi 2012, (k) Borrelli et al. 2014, (l) Tabelow
et al. 2015, (m) Manjón et al. 2015, (n) Aja-Fernández et al. 2015b and (o) our proposal.
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Figure 5.22: Visual inspection of the methods for simulated PD-weighted SENSE MRI brain
data. (I) Ground truth and silver standard methods along 500 repetitions: (II) DeVore et al.
2000, (III) Maximov et al. 2012, (IV) Landman et al. 2009b and (V) Glenn et al. 2015.
Examined methods: (a) DeVore et al. 2000, (b) Delakis et al. 2007, (c) Maximov et al. 2012,
(d) Liu et al. 2014, (e) Goossens et al. 2006, (f) Landman et al. 2009b, (g) Manjón et al.
2010, (h) Rajan et al. 2011, (i) Pan et al. 2012, (j) Maggioni and Foi 2012, (k) Borrelli et al.
2014, (l) Tabelow et al. 2015, (m) Manjón et al. 2015, (n) Aja-Fernández et al. 2015b and
(o) our proposal.

The qualitative results of the third experiment are shown in Figs. 5.21 and 5.22. Different
references are considered: the ground truth for Cartesian SENSE, analytically derived by
Aja-Fernández et al. 2014a (Figs. 5.21I and 5.22I) and the estimates defined for multiple
repetitions along R = 500 independent replicas of the image defined in section 4.3.2: DeVore
et al. 2000, Maximov et al. 2012, Landman et al. 2009b and Glenn et al. 2015 (Figs. 5.21II–V
and 5.22II–V). These pseudo-reference maps are used then as silver standards, i.e., the noise
maps that would be obtained, if the appropriate number of scans are available.

The results of this experiment significantly differ from the previous one, though the same
phantoms were arranged to generate the noisy images. Almost all examined methods pre-
sented in section 4.3.1 failed in this experiment. There are two reasons for this: 1) spatial
correlations of the noise component, which are introduced by Cartesian SENSE reconstruc-
tions, and, 2) much smaller variability degrees of the noise patterns. Note that local methods
provide highly granular results and the patch based methods do not overcome this limitation
as in previous qualitative experiment.

Aja-Fernández et al. 2015b provide smooth and granularity-free noise patterns, however,
they are slightly underestimated once again (Figs. 5.21n and 5.22n). The reasonable results of
the estimation process can be obtained using hereby proposed variance-stabilizing homomor-
phic approach (Figs. 5.21o and 5.22o). Finally, note, although we used different correlation
ratios and variability degrees of the noise patterns, the results yielded by our proposal are
consistent for all contrast type SENSE MRI data.
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5.5.5 Real MRI data experiments

In the fourth experiment, we estimate the noise map for real noisy T1-weighted TFE
SENSE MRI phantom reconstructed from L = 32 coils with subsampling rate r = 2 in phase
encoding direction (Fig. 5.7g). Since the ground truth is not available in this case, we resort
to silver standard approaches (DeVore et al. 2000, Maximov et al. 2012, Landman et al.
2009b and Glenn et al. 2015) being pointwise estimators along twenty acquisitions (R = 20)
of the same phantom. Again, the SNR map has to be estimated by each method individually
in the experiment. Note that the final magnitude of this real SENSE MRI data set presents
highly spatially correlated noise component.

The results of the experiment are presented in Fig. 5.23. Some of local methods (DeVore
et al. 2000, Maximov et al. 2012 and Landman et al. 2009b) perform well enough inside the
phantom due to the local homogeneity of the source (see Fig. 5.23a, c, f). The phantom used
in this experiment does not consist of tissue transitions usually observed in a typical in vivo
brain MRI examination, thus, the estimators are not affected by the outliers. Indeed, the
granularities of the noise maps come from the small number of samples used in the estimation
process (typically 25 samples are taken into account to provide a single noise level estimate).
In comparison with the second experiment, the wavelet-based methods (Delakis et al. 2007,
Liu et al. 2014 and Goossens et al. 2006) failed in this evaluation (Fig. 5.23b, d, e). This is
due to the extraction of high-frequency components from already smoothed MR image.

Maggioni and Foi 2012 provide quite reasonable results inside the phantom, though,
the noise map is significantly overestimated near edges of the object (Fig. 5.23j). Borrelli
et al. 2014 and Tabelow et al. 2015 provide highly underestimated noise patterns, however,
the structure of the map is still preserved (Fig. 5.23k, l). We draw attention to the results
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Figure 5.23: Visual inspection of the methods for real T1-weighted TFE SENSE MRI phantom
(Fig. 5.7g). Silver standard methods along 20 acquisitions: (I) DeVore et al. 2000, (II) Maxi-
mov et al. 2012, (III) Landman et al. 2009b and (IV) Glenn et al. 2015. Examined methods:
(a) DeVore et al. 2000, (b) Delakis et al. 2007, (c) Maximov et al. 2012, (d) Liu et al. 2014,
(e) Goossens et al. 2006, (f) Landman et al. 2009b, (g) Manjón et al. 2010, (h) Rajan et al.
2011, (i) Pan et al. 2012, (j) Maggioni and Foi 2012, (k) Borrelli et al. 2014, (l) Tabelow
et al. 2015, (m) Manjón et al. 2015, (n) Aja-Fernández et al. 2015b and (o) our proposal.
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obtained from Landman et al. 2009b and Rajan et al. 2011: the methods show good be-
haviour in the boundaries and inside the phantom, though the granularity is still a problem
(Fig. 5.23f, h). Surprisingly, Manjón et al. 2015 failed in this experiment, probably due to
the differences in eigenvalues distribution in non-local PCA decomposition between synthetic
and real MRI data (Fig. 5.23m; see also eq. (4.44)). Finally, Aja-Fernández et al. 2015b give
clear, smooth and granularity-free results, but nevertheless the noise patterns are slightly
underestimated in comparison with silver standards (Fig. 5.23n).

The proposed method retrieves smooth and granularity-free results as well, and it does
not underestimate the noise levels in the foreground area (Fig. 5.23o). A little overestimations
can be still observed near edges of the phantom. These overestimations predominantly depend
on the selected noise extraction procedure (a bilateral filter in this example), and they can be
mitigated choosing other edge-preservation and AWGN-compliant image filtering procedure.

In the fifth experiment, we examine in vivo T2-weighted TSE SENSE MRI brain data
and in vivo T2-weighted FFE SENSE MRI brain data (Fig. 5.7h, i). Neither ground truth
nor pseudo-reference map is available in this case. So, we only visually verify the differences
of noise patterns between the methods and compare the results to the previous experiments.

Some local methods (DeVore et al. 2000, Delakis et al. 2007 and Maximov et al. 2012) pro-
vide highly granular and overestimated noise maps especially near skull edges (Fig. 5.24a–c).
Note that these results are compatible with previous results obtained from the second and
the third experiment (compare with Figs. 5.18a–c, 5.19a–c, 5.20a–c, 5.21a–c, and 5.22a–c).
Contrary, the methods by Liu et al. 2014, Goossens et al. 2006, Pan et al. 2012 and Manjón
et al. 2015 show significant underestimations of the noise for in vivo SENSE MRI acquisitions
(Fig. 5.24d, e, i, m). These results are also fully consistent with the fourth experiment on real
MRI data (compare with Fig. 5.23d, e, i, m). Quite reasonable results in the foreground area
of the brain generate Maggioni and Foi 2012, though, overestimations about the skull edges
can be noticed in T2-weighted TSE SENSE MRI data. These inaccuracies of the estimated
maps have a little importance, since the skull is usually stripped prior to the data analysis
step (e.g., image registration or image segmentation).

Finally, the results from the method by Aja-Fernández et al. 2015b and our proposal
are shown in Fig. 5.24n and Fig. 5.24o, respectively. Note since a pseudo-reference map is
not available in this experiment, we can only deduce that our proposal gives the acceptable
results from the consistency with the previous experiments evaluated visually.

5.6 Computational cost of the noise estimation scheme

The computational cost of the noise estimation algorithm is crucial when processing the
stacked slices of MRI data. The core of the algorithm, obviously, can be implemented in
low-level programming language, which allows direct accessing to the memory, e.g., C pro-
gramming language. We can go even further and employ parallel computing platforms like
graphics processing unit (GPU) or field-programmable gate array (FPGA) to significantly
speed-up the computations. However, when developing the noise estimation algorithm, one
has to be well aware of the following facts:

• the noise estimation procedure is only a minor part of the whole MRI data processing
and analysis pipeline, which usually includes other related steps, e.g., image denoising,
parameter estimation, tissue segmentation and/or image registration,

• the noise estimation must be carried out for each slice individually as long as we
consider 2D acquisition.
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Figure 5.24: Visual inspection of the methods for in vivo T2-weighted TSE SENSE MRI slice
from Fig. 5.7h (top figure) and in vivo T2-weighted FFE SENSE MRI slice from Fig. 5.7i
(bottom figure). Examined methods: (a) DeVore et al. 2000, (b) Delakis et al. 2007, (c)
Maximov et al. 2012, (d) Liu et al. 2014, (e) Goossens et al. 2006, (f) Landman et al. 2009b,
(g) Manjón et al. 2010, (h) Rajan et al. 2011, (i) Pan et al. 2012, (j) Maggioni and Foi 2012,
(k) Borrelli et al. 2014, (l) Tabelow et al. 2015, (m) Manjón et al. 2015, (n) Aja-Fernández
et al. 2015b and (o) our proposal.



5.6. Computational cost of the noise estimation scheme 98

In this research, we verify the averaged execution times of the algorithms studied in this
chapter using two MRI slices of size 256×256 and 560×560 pixels, respectively. We examine
the computational cost of the methods using their implementations in MathWorks MATLAB
2013b under GNU/Linux Debian operating system with kernel version 3.16.0. We remind
that two methods, namely Maggioni and Foi 2012 and Tabelow et al. 2015, are verified
using their original source code shared by the authors. These methods provide their cores
in C programming language and GNU R environment, respectively. Additional scripts are
written in MathWorks MATLAB environment and they are used only as wrappers to these
routines.

The averaged results of the examinations for single MRI slices are presented in Table 5.5.
As we expected, the computationally efficient methods are the local ones, since they are
mostly implemented using a set of 2D convolutions. Opposite to local estimators, the patch-
based methods (Manjón et al. 2010, Manjón et al. 2015 and Rajan et al. 2011) are the
least computationally efficient due to the requirement of |V (x)| − 1 comparisons between
the local patch η(x) and the remaining patches η(p) for each pixel of the image individu-
ally. Consequently, the computational complexity of NLM-based algorithm is of the order of
O(|V (x)||η(x)|) for a single point of the image. Some speed-up strategies of the NLM scheme
have been published so far (Chan et al. 2013, Bhujle and Chaudhuri 2014), but they usually
refer to image denoising procedure rather than noise estimation.

The computational cost of our proposal largely depends on employed noise extraction
procedure (see Fig. 5.25). Specifically, we can estimate the computational complexity of
these noise extraction procedures as follows:

• SWT is of the order of O(2k), if separable convolutions are used as explained in
eq. (5.29); k is the number of coefficients of the filter (see Fig. 5.6),

• bilateral filter is of the order of O(|η(x)|).

Table 5.5: Averaged execution times of the algorithms for a single image of size 256 × 256
and 560× 560 pixels.

Method
Execution time

256× 256 560× 560

Goossens et al. 2006 6 ms 20 ms

Delakis et al. 2007 34 ms 116 ms

Maximov et al. 2012 58 ms 187 ms

Liu et al. 2014 61 ms 211 ms

DeVore et al. 2000 120 ms 457 ms

Aja-Fernández et al. 2015b 168 ms 762 ms

Proposal (SWT) 191 ms 863 ms

Pan et al. 2012 704 ms 3 s 129 ms

Proposal (bilateral filter) 1 s 160 ms 4 s 812 ms

Maggioni and Foi 2012 (÷) 1 s 289 ms 4 s 735 ms

Borrelli et al. 2014 1 s 323 ms 4 s 880 ms

Landman et al. 2009a 5 s 457 ms 26 s

Manjón et al. 2010 35 s 2 min 43 s

Tabelow et al. 2015 (?) 53 s 1 min 16 s

Manjón et al. 2015 1 min 15 s 6 min 26 s

Rajan et al. 2011 4 min 26 s ∼ 1.5 h

(÷) The algorithm is partly delivered in C programming language.

(?) The algorithm is delivered in GNU R environment.



5.7. Conclusions and remarks 99

Legend:
Stationary wavelet decomposition

Bilateral filter

Figure 5.25: The percentage computational cost of two variants of the proposed noise esti-
mation algorithm (compare to the scheme included in Fig. 5.4). Note that we split Gaussian
homomorphic noise estimation module from Fig. 5.4 into two steps namely noise extraction
and noise estimation.

At first glance, it looks as the results included in Table 5.5 were inconsistent with the
theoretical considerations. However, note that we used build-in MathWorks MATLAB func-
tion to convolve the signal (single row/column of the image) with the kernel10, while the core
of the bilateral filter was prepared from scratch. Finally, note that we used a naive imple-
mentation of the bilateral filter instead of a fast algorithm of the order of O

(
log

√
|η(x)|

)
11

or even O(1) (see Weiss 2006 and Porikli 2008 for more details).

5.7 Conclusions and remarks

In this chapter, we proposed a new variance-stabilizing transformation for Rician distributed
random variable. This methodology allows transforming Rician distributed data to another
data with Gaussian variate. Consequently, the signal-dependent Rician noise can be rep-
resented as a signal-independent AWGN component. We proved this transformation to be
robust for the whole range of SNRs, i.e., from very low SNRs – Rayleigh distribution to very
high SNRs – Gaussian distribution.

Then, we set up a variance-stabilizing homomorphic approach to estimate spatially vari-
ant noise patterns from non-stationary Rician distributed data. The non-stationary Rician
noise is particularly interesting since we can find it in modern accelerated parallel MRI ac-
quisitions like SENSE MRI. We adapted the proposed variance-stabilizing transformation to
non-stationary Rician distributed data and then we combined the transformation with the ho-
momorphic filtering scheme. The proposed spatially variant Rician noise estimation
method shows a remarkably better behaviour than all most relevant state-of-the-
art methods including recent advances published in 2015. The variance-stabilizing
homomorphic filter is characterized by many advantages over recent state-of-the-art tech-
niques estimating the noise from a single MR image. While the robustness of this estimator
was justified in this chapter, we indicate the following superiorities of our proposal over the
state-of-the-art:

• it takes signal-dependency of Rician noise into account rather than correction factors
or rough assumptions of Gaussianity,

• it does not require pre-scans, multiple acquisitions, or a biophysical model of the data
to retrieve the noise patterns,

10Actually, MathWorks MATLAB call the procedure conv2.mex, which is written in a low-level program-
ming language rather than in MathWorks MATLAB itself.

11In comparison with commercial software, Adobe Photoshop CS2’s Surface Blur module uses the algorithm

in the order of O
(

log
√
|η(x)|

)
(Porikli 2008).
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• it is not affected by the granular effect,

• any technical details about the acqusition procedure like sensitivity profiles or noise
matrices of the receiver coils are not required,

• it does not involve computationally intensive schemes like maximum likelihood or
non-local means paradigm.

Our proposal is characterized also by some “soft” advantages:

1. The algorithm is flexible in comparison with other solutions. Specifically, different
methodologies can be plugged into prior noise estimation and SNR estimation
blocks of the pipeline included in Fig. 5.4. To verify this, we employed various meth-
ods to estimate a prior noise map σ0(x). These estimates are used then to stabilize
the variance in non-stationary Rician distributed data (see Table 5.2). This experi-
ment showed that almost any noise estimation approach presented in section 4.3.1 can
be used as the initial guess σ̂0(x). Furthemore, we can substitute the noise extrac-
tion procedure included in Gaussian homomorphic noise estimation block by other
edge-preservation and AWGN-compliant solution, e.g., the non-local means scheme
(Buades et al. 2005) or guided filter (He et al. 2013).

2. The software implementation of our proposal is straightforward. It uses point-
wise operations for variance-stabilizing transformation and discrete convolutions to ex-
tract the noise component from variance-stabilized non-stationary Rician distributed
data. The noise estimation is carried out using the low-pass filter LPFσf as pointwise
multiplication in DCT domain of the image. This enables to easily reimplement our
proposal in almost any programming language or in an integrated circuit and finally
place it inside the MRI scanner.

3. The proposal is versatile and scalable. It can be related to other engineering-
related disciplines, where the signal follows (non-)stationary Rician distribution. The
variance-stabilizing transformation and/or Rician noise estimation scheme can be em-
ployed in other scenarios:

• SAR imaging: the data in SAR imaging follows Rician distribution and they are
highly distorted by the noise (DeVore et al. 2000),

• laser speckle: the intensity in speckle pattern phenomenon follows Rician distri-
bution (Goodman 1975),

• Rician fading channel: a model for radio propagation anomaly follows Rician dis-
tribution (Vandendorpe 1995).
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6.1 Introduction

In this chapter we focus on non-stationary nc-χ distributed noise. This kind of noise is
also relevant in MRI since it appears in accelerated parallel GRAPPA MRI magnitude data
obtained with SoS and in multiple-coil acquisitions also reconstructed with SoS formula.
Noise analysis in non-stationary nc-χ distributed data becomes more complicated than in
non-stationary Rician data since additional parameter in statistical model appears, i.e., the
parameter associated with the number of receiver coils. Moreover, the effective parameters
must be introduced if accelerated parallel GRAPPA MRI or correlated multiple-coil is con-
sidered (both with SoS formula).

In this chapter, we propose the VST for nc-χ distributed RV. The VST is intentionally
designed to generate Gaussian-like distributed variates from nc-χ data. As an application and
proof of concept, we apply proposed VST framework to accurately estimate spatially variant
noise patterns of accelerated parallel GRAPPA MR images obtained with SoS formula.

Analogously to Rician case, the proposal in spatially variant nc-χ noise estimation is
characterized by many advantages over the state-of-the-art:

1. It is based on the VST procedure, which transforms the nc-χ data to Gaussian variates
rather than Gaussian approximations. The noise estimation method is then accurate
for the whole range of SNRs (from very low SNRs – non-stationary c-χ distribution to
very high SNRs – non-stationary Gaussian distribution).

2. The single non-stationary nc-χ distributed image is used to retrieve a spatially variant
noise pattern.

3. Our proposal does not require reconstruction coefficients for GRAPPA MRI and it
works for retrospectively reconstructed magnitude data being a vendor independent
method. Multiple acquisitions or pre-scans are not required to estimate the noise map.

4. Our proposal can be applied to different contrast type examinations including T1-, T2-,
and PD-weighted MRI data sets.

5. The method is not affected by the granular effect as the final step of the algorithms is
the homomorphic filtering procedure.

6. Our proposal is fast since it is implemented using discrete convolutions and pointwise
operations.

7. Finally, the proposed VST allows using any Gaussian-compliant noise estimation
method presented in Chapter 4.3 to retrieve spatially variant noise patterns from
non-stationary nc-χ distributed data.

This chapter is organized as follows. In section 6.2, we present a mapping technique from
nc-χ to Gaussian distributed signals, which was previously used in the MRI community. In
section 6.3, we analytically derive the asymptotic VST for nc-χ distribution using squared
nc-χ distributed RV. Then, we provide a robust numerical model in a similar fashion to
Rician VST as presented in Chapter 5. This numerical model improves the performance of
the asymptotic stabilizer for low SNRs. Next, in section 6.4, we adapt the proposed VST
to non-stationary nc-χ distribution and we introduce noise estimation method for signal-
dependent non-stationary nc-χ noise. Section 6.5 is devoted to present synthetic and real
GRAPPA MRI data sets employed in the evaluation process of our proposal. In section
6.6, we verify the VSTs and the noise estimation algorithm in comparison with state-of-
the-art methods. Firstly, we confirm the robustness of VSTs against the state-of-the-art
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Figure 6.1: (a) The probability density functions and (b) the cumulative distribution func-
tions for nc-χ distributed RV for different values of the amplitude AT . The number of receiver
coils L and the underlying noise variance σ2 is the same for all plots, i.e., L = 8 and σ2 = 1.

mapping technique from nc-χ to Gaussian distributed signals using statistical hypothesis
testing, i.e., Chi-square goodness-of-fit test and Anderson-Darling test. Secondly, we show
some quantitative experiments of the noise estimation algorithm using simulated accelerated
parallel GRAPPA MRI data. Thirdly, the qualitative evaluations of our proposal are depicted
for synthetic and real GRAPPA MRI data. Finally, we present experiments, which compare
noise estimation results from a single image to the estimation process along the repeated
scans. In the last paragraph of the chapter the concluding remarks are drawn.

6.2 Mapping from nc-χ to Gaussian distributed signals

In this section, we present a mapping method from a nc-χ distributed RV to a Gaussian
distributed RV. This kind of methodology is well-known in probability theory and it was
already used in context of digital signal processing including electroencephalography signals
(Van Albada and Robinson 2007) and magnetic resonance imaging data (Koay et al. 2009a).

To explain the method, let us recall the PDF of nc-χ distributed RV ML given by (3.25):

p(ML|AT , σ, L) =
A1−L
T

σ2 ML
L exp

(
−M

2
L +A2

T

2σ2

)
IL−1

(
ATML

σ2

)
, ML ­ 0, (6.1)

where ML = ML(x) is the magnitude signal, σ2 is the underlying noise variance, L is the
number of receiver coils and AT = AT (x) is the noise-free amplitude signal. Consequently,
the CDF corresponding to (6.1) is defined by the formula:

FML
(m|AT , σ, L) = 1−QL

(
AT
σ
,
m

σ

)
, (6.2)

where QL(·, ·) is the generalized Marcum Q-function of L–th order (see Appendix A):

QL

(
AT
σ
,
m

σ

)
=
(
σ

AT

)L−1 ∫ ∞
m
σ

tL exp

(
−σ

2t2 +A2
T

2σ2

)
IL−1

(
AT t

σ

)
dt. (6.3)

The exemplary PDFs and the corresponding CDFs of nc-χ distributed RV for eight
receiver coils (L = 8) are depicted in Fig. 6.1a and Fig. 6.1b, respectively.
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Figure 6.2: (a) The inverse of the error function erf(x) (6.6) and its approximation using
Maclaurin series (6.8). (b) The zoomed plot from figure (a).

To map a real-valued nc-χ distributed signal ML to the Gaussian equivalent MG, the
following composition can be employed (Koay et al. 2009a)1:

MG = F−1
MG

(
FML

(ML|AT , σ, L)
∣∣∣AT , σ), (6.4)

where F−1
MG

(·|AT , σ) is the inverse CDF of a Gaussian RV with the expectation AT and the
standard deviation σ. The function F−1

MG
is given by the expression:

F−1
MG

(y|AT , σ) = AT + σ
√

2erf−1(2y − 1) (6.5)

with erf−1(x) being the inverse of the error function erf(x):

erf(x) =
2√
π

∫ x

0
e−t

2
dt. (6.6)

Finally, an outlier-rejection step is recommended, which marks a sample MG from eq. (6.4)
to be an outlier if the following inequalities do not hold:

ε

2
¬ FML

(ML|AT , σ, L) < 1− ε

2
. (6.7)

The parameter ε is user-defined, e.g., ε = 0.005. So, the method presented by Koay et al.
2009a can be summarized as follows:

1. firstly, the CDF (6.2) is applied to the nc-χ distributed data,

2. then, the inverse CDF (6.4) is calculated assuming Gaussianity of the data.

The presented method is straightforward, since it is only a pointwise operation. However,
some further comments on the method are worth being pointed out here:

1. The method requires the parameters of the nc-χ distributed signal ML to be known in
advance, i.e., the noise-free signal AT , the underlying noise standard deviation σ and
the number of receiver coils L. These parameters are used to calculate the generalized
Marcum Q-function (6.3) and the inverse CDF of a Gaussian RV (6.5), and they must be

1For the simplicity of the notation, we use the same symbol to refer both a Gaussian RV MG and a par-
ticular realization of the RV.
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estimated directly from the signal. Many methods can be arranged here, e.g., LMMSE
estimator (Brion et al. 2011, Vegas-Sánchez-Ferrero et al. 2012), ML estimator (Rajan
et al. 2012, Tabelow et al. 2015) or a fixed point formula (Koay and Basser 2006, Koay
et al. 2009b).

2. The inverse of the error function erf−1(x) and the generalized Marcum Q-function
must be numerically evaluated. The former function can be approximated using the
Maclaurin series as follows (Sloane et al. 2003, see Fig. 6.2):

erf−1(x) ≈
√
π

(
1
2
x+

1
24
πx3 +

7
960

π2x5 +
127

80640
π3x7

)
. (6.8)

Note that erf−1(x) has three special values:

erf−1(x) =


−∞ for x = −1

0 for x = 0

∞ for x = 1.

(6.9)

The approximation of the latter function becomes more complicated, since it requires
the evaluation of the integral consisting the modified Bessel function of the first kind
(6.3). Although many methods were proposed to approximate generalized Marcum
Q-functions, we refer to the algorithm presented in Shnidman 1989 since it is computa-
tionally tractable. Note that numerical evaluations of generalized Marcum Q-functions
are beyond the scope of the thesis and it might be an interesting topic for further
research line.

3. The formula (6.4) is also valid for Rician RV with the CDF given by:

FML
(m|AT , σ) = 1−Q1

(
AT
σ
,
m

σ

)
, (6.10)

6.3 The variance-stabilizing transformation

In this section, we are looking for a function fstab : R → R, which stabilizes the variate of
nc-χ distributed RV ML, i.e., it transforms the nc-χ distributed RV in such a way that the
variance of the new RV fstab(ML) equals one. The main idea when stabilizing the variance
in nc-χ distribution is similar to Rician case, however, additional parameter is introduced
here, i.e., the number of the receiver coils L (L ­ 1). Note that the number of receiver coils
equals one for Rician distribution.

In this section, we derive the asymptotic variance stabilizer, and then we propose a robust
numerical scheme to improve the performance of the asymptotic model for low SNRs.

6.3.1 Asymptotic stabilizer for nc-χ distributed data

The variance of nc-χ data is in the functional dependence of the underlying (noise-free) sig-
nal AT as stated in Chapter 3. Since the nc-χ distributed RV ML (i.e., ML ∼ nc-χ(AT , σ, L))
does not have a closed-form expression for the expectation operator E{ML}, we refer to
the squared random variable M2

L, which follows a noncentral Chi-squared distribution,
i.e., M2

L ∼ nc-χ2(AT , σ, L). The PDF of M2
L distributed RV is given then by (Aja-Fernández

et al. 2011; compare to eq. (6.1)):

p(M2
L|AT , σ, L) =

A1−L
T

2σ2 ML−1
L exp

(
−M

2
L +A2

T

2σ2

)
IL−1

(
ATML

σ2

)
, ML ­ 0, (6.11)
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where M2
L is the squared CMS and A2

T = A2
T (x) is defined by the formula A2

T (x) =
L∑
l=1
|Al(x)|2 with Al(x) being a noise-free signal from l–th receiver coil. Thenceforth, the

odd raw moments can be expressed in closed-form expressions and consequently they are
computationally tractable functions.

In what follows, the expectation value and the variance of M2
L distributed RV are given

by (Simon 2007, Aja-Fernández and Tristán-Vega 2012):

E{M2
L} = A2

T + 2Lσ2, (6.12)

Var{M2
L} = 4A2

Tσ
2 + 4Lσ4. (6.13)

To derive the VST for squared nc-χ distributed RV, we use the first order Taylor expan-
sion of the variance-stabilizing function fstab(M2

L|σ, L) about a point M2
L = Ã2

T :

fstab(M2
L|σ, L) = fstab(Ã2

T |σ, L) + (M2
L − Ã2

T )
dfstab

dM2
L

∣∣∣∣∣
M2
L=Ã2

T

+R1(M2
L), (6.14)

where R1(M2
L) is the remainder term of the expansion. We neglect this remainder term and

take the variance on both sides of eq. (6.14):

Var{fstab(M2
L|σ, L)} ≈ Var{M2

L} ·

 dfstab

dM2
L

∣∣∣∣∣
M2
L=Ã2

T

2

. (6.15)

We impose now the constraint Var{fstab(M2
L|σ, L)} = 1 and calculate the integral of eq. (6.15)

leading to a general formula of the asymptotic variance stabilizer for nc-χ2 distributed
RV M2

L:

fstab(M2
L|σ, L) =

∫ M2
L 1√

Var{M2
L|ÃT , σ, L}

dÃT , (6.16)

where Var{M2
L|ÃT , σ, L} is the conditional variance of nc-χ2 distributed RV, i.e., the variance

in the function of the parameter ÃT . We derive this conditional variance referring to the
expectation value and the variance of M2

L given by eqs. (6.12–6.13). From (6.12) we have
A2
T = E{M2

L} − 2Lσ2, and then we put it into the eq. (6.13) leading to the formula:

Var{M2
L} = 4

(
E{M2

L} − 2Lσ2
)
σ2 + 4Lσ4 = 4σ2

(
E{M2

L} − Lσ2
)
. (6.17)

Note that the formula (6.17) depends on the noise variance parameter σ2, the number of
receiver coils L and the expectation value of M2

L. We assume now that µ2 = E{M2
L} and

rewrite the formula (6.17) leading to the conditional variance of M2
L:

Var{M2
L|µ2, σ, L} = 4σ2

(
µ2 − Lσ2

)
. (6.18)

We plug now the eq. (6.18) into the integral (6.16):

fstab(M2
L|σ, L) =

1
2σ

∫ M2
L 1√

µ2 − Lσ2
dµ2. (6.19)

To compute the integral (6.19), we refer to u-substitution rule. Let us assume that
u = µ2 − Lσ2 and du = dµ2. Then, we have:∫

1√
µ2 − Lσ2

dµ2 =
∫
u−

1
2 du = 2

√
u+ C = 2

√
µ2 − Lσ2 + C, C ∈ R. (6.20)
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Figure 6.3: (a) Comparison of standard deviations in terms of SNR (SNR = AT /
√
Lσ2) be-

tween non-stabilized nc-χ data (dotted lines), variance-stabilized nc-χ data using asymptotic
model (dashed lines) and robust numerical model (solid lines) for different number of receiver
coils L. (b) The zoomed figure for SNR ∈ [0; 3].

Finally, the asymptotic stabilization formula (6.19) becomes the form:

fstab(M2
L|σ, L) =

1
σ

√
M2
L − Lσ2 =

√
M2
L

σ2 − L. (6.21)

The transformation (6.21) provides the asymptotic variance stabilizer for squared nc-χ
distributed RV. Two issues must be addressed here:

1. The formula (6.21) does not depend on the underlying noise-free signal AT anymore. So,
to stabilize the variance in nc-χ distributed data, we need the square operation of the
data and two parameters to be known in advance: the noise standard deviation σ and
the number of receiver coils L. Note that the mapping technique from nc-χ to Gaussian
distributed signals, previously presented in section 6.2, requires three parameters to be
known beforehand: AT , σ and L.

2. The formula (6.21) is not consistent with Rician VST for L = 1 (compare to eq.
(5.6)), since we used nc-χ2 distributed RV to obtain the closed-form expression for
the expectation operator (6.12) and the variance (6.13) rather than the asymptotic
approximation.

6.3.2 Robust numerical model

In the previous section, we derived the asymptotic model, which stabilizes the variance in nc-
χ distributed data. The model requires the square operation of the data and two parameters
to be known before the stabilization process namely the noise standard deviation σ and
the number of the receiver coils L. Nevertheless, due to the simplifications implicit in the
transformation, the previous model could not optimally work for low SNRs (see Fig. 6.3).

In this section, we propose a robust numerical model, which improves the accuracy of
VST for low SNRs, while keeping the properties of asymptotic transformation for high SNRs.
To that end, we redefine the eq. (6.21) using a vector parameter Θ = (θ1, θ2):

fstab(M2
L|σ, L,Θ) =

1
σ

√
max{θ2

1M
2
L − θ2Lσ2, 0}. (6.22)
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The vector parameter Θ must be tuned accordingly to the SNR of the signal defined as:

SNR =
AT√
Lσ2

. (6.23)

We introduce the maximum operator max{·, ·} in eq. (6.22) to avoid a negative value under
the square root sign. Then, the numerical optimization procedure is applied with the following
criterion:

Θopt = arg min
Θ

J
(
fstab(M2

L|σ, L,Θ)
)
, (6.24)

where J : R2 7→ R is a cost function to be minimized:

J
(
fstab(M2

L|σ, L,Θ)
)

= λ1 · ϕ(1−Var{fstab(M2
L|σ, L,Θ)})

+ λ2 · ϕ(Skewness{fstab(M2
L|σ, L,Θ)})

+ λ3 · ϕ(ExcessKurtosis{fstab(M2
L|σ, L,Θ)}),

(6.25)

where λ1 + λ2 + λ3 = 1 and ϕ(x) is a convex function, e.g., ϕ(x) = x2. Clearly, we impose
the variance of the variance-stabilized data to be unitary, while the skewness and the ex-
cess kurtosis to be zero. Note that similarly to Rician case, additional parameters can be
included in the cost function (6.25), e.g., higher order moments or measures of the shape of
a probability distribution like L–moments (Hosking 1992).

We define now the components of the cost function (6.25) in terms of the raw moments
for fstab–transformed nc-χ2 distribution:

Var
{
fstab(M2

L|σ, L,Θ)
}

= m2 −m2
1,

Skewness
{
fstab(M2

L|σ, L,Θ)
}

=
m3 − 3m1m2 + 2m3

1

(m2 −m2
1)

3
2

,

ExcessKurtosis
{
fstab(M2

L|σ, L,Θ)
}

=
m4 − 4m1m3 + 6m2

1m2 − 3m4
1

(m2 −m2
1)2 − 3,

(6.26)

where r–th raw moment for fstab–transformed nc-χ2 distributed RV is defined now as follows:

mr = E{f rstab(M2
L|σ, L,Θ)}

=
∫ ∞

0
f rstab(M̃2

L|σ, L,Θ)p(M̃2
L|AT , σ, L)dM̃2

L

=
∫ ∞

0
f rstab(M̃2

L|σ, L,Θ)
A1−L
T

2σ2 M̃L−1
L exp

−M̃2
L +A2

T

2σ2

 IL−1

(
AT M̃L

σ2

)
dM̃2

L.

(6.27)

The optimization of the cost function (6.25) is performed by calculating the raw moments
defined by (6.27) of the stabilized nc-χ2 distributed RV by means of the adaptive Gauss-
Kronrod quadrature over the interval ML ∈ [0, 30]. We used Nelder-Mead optimization
method assuming σ = 1 and logarithmically increasing parameter AT between 0.001 and 15.

The performance of the resulting optimization procedure for the convex function
ϕ(x) = x2, weighting parameters (λ1, λ2, λ3) = (0.998, 0.001, 0.001) and different number
of the receiver coils L is shown in Fig. 6.3. The results obtained with the asymptotic VST
is satisfactory for high SNRs only. The robust numerical model stabilizes the nc-χ data in
the whole range of SNRs for all the cases considered (L ∈ {1, 2, 4, 8, 16, 32, 64}), though, the
knowledge about the SNR of the signal is required. The accuracy of the asymptotic model
improves with the increasing number of receiver coils L and it can be a good alternative to
the numerical approach for L ­ 32, especially assuming that it does not require the SNR



6.4. Non-stationary nc-χ noise estimation 109

Spatially variant 

 noise map              

Prior estimation of 

SNR estimation

VST
Gaussian homomorphic

noise estimation

nc- data

Parameter
optimization

Non-stationary

Figure 6.4: General scheme of our proposal in non-stationary nc-χ noise estimation. The
method requires the initial estimate of σ2

eff(x)Leff(x) and the SNR map to stabilize the data

(the block VST), and then to retrieve the spatially variant noise map estimate σ̂eff(x) using
the Gaussian homomorphic filter. The optimal vector parameter Θopt is obtained from the
numerical optimization procedure (6.24). The red rectangle indicates the interchangeable
module of the pipeline.

of the signal to be known. Note that we assumed that the SNRs for numerical model are
exactly known for this experiment.

The optimized version of the formula (6.22) finally becomes the form:

fstab(M2
L|σ, L,Θopt) =

1
σ

√
max{θ2

1optM
2
L − θ2optLσ2, 0}, (6.28)

where Θopt = (θ1opt, θ2opt) is the optimized vector parameter Θ.

6.4 Non-stationary nc-χ noise estimation

In section 6.3, we proposed transformations to stabilize the variance of nc-χ distributed RV:

1. the asymptotic stabilizer (6.21) in a closed-form formula,

2. the numerical model (6.28), which boosts the accuracy of the asymptotic transforma-
tion for low SNRs.

These transformations change a signal-dependent nc-χ distributed noise to the Gaussian
equivalent. In this section, we present a non-stationary nc-χ noise estimation approach em-
ploying proposed VSTs and the homomorphic Gaussian filter (Aja-Fernández et al. 2015b,
Aja-Fernández and Vegas-Sánchez-Ferrero 2015).

6.4.1 Spatially variant nc-χ noise estimation

The VSTs derived in section 6.3 are intended for nc-χ distributed RV. However, a typical
MRI acquisition shows a certain level of correlation between the receiver coils (Aja-Fernández
et al. 2011, Aja-Fernández and Tristán-Vega 2012, Algarin et al. 2015). Consequently, the
VST (6.28) must be corrected taking the correlations between the coils into account, when
applied to the magnitude signal ML(x) obtained from accelerated parallel GRAPPA MRI
or a multiple-coil acquisition (both reconstructed with SoS). To this end, we introduce the
effective parameters to eq. (6.28) leading to the formula:

fstab(M2
L|σeff, Leff,Θopt) =

1
σeff

√
max{θ2

1optM
2
L − θ2optLeffσ

2
eff, 0}. (6.29)

Once the VST is adapted to the squared CMS signal M2
L = M2

L(x), we can follow the
pipeline depicted in Fig. 6.4. This figure summarizes the spatially variant noise estimation
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procedure for nc-χ distributed data and it is employed to estimate the noise patterns for
accelerated parallel GRAPPA MRI with SoS reconstruction in this chapter.

Firstly, we pointwisely apply the VST (6.29) to the magnitude image ML(x) as follows
(the block VST in Fig. 6.4):

M̃L(x) = σ̂eff(x) · fstab(M2
L(x)|σ̂eff(x), L̂eff(x),Θopt(x))

=

√
max{θ2

1opt(x)M2
L(x)− θ2opt(x)L̂eff(x)σ̂2

eff(x), 0},
(6.30)

where L̂eff(x) and σ̂2
eff(x) are the estimates of the effective number of coils and the effective

variance of noise, respectively, and Θopt(x) = (θ1opt(x), θ2opt(x)) is the vector parameter Θ
optimized to local SNR. The optimization procedure (6.24) requires the SNR level, which
is defined for accelerated parallel GRAPPA MRI with SoS reconstruction as follows (Aja-
Fernández et al. 2014a):

SNRML
(x) =

AT (x)√
Leff(x)σ2

eff(x)
r

, (6.31)

where r is the subsampling rate of the raw data in k–space domain. The parameters θ1opt(x)
and θ2opt(x) are defined now in terms of local SNR level:

θ1opt(x) = (θ1 ◦ SNRML
)(x),

θ2opt(x) = (θ2 ◦ SNRML
)(x).

(6.32)

Note, that if the asymptotic VST is used instead (i.e., θ1opt(x) ≡ 1 and θ2opt(x) ≡ 1),
the stabilization (6.30) is reduced to the formula:

M̃L(x) =

√
max{M2

L(x)− L̂eff(x)σ̂2
eff(x), 0}. (6.33)

After the variance-stabilizing procedure, M̃L(x) can be seen as a noise-free signal ÃT (x)
corrupted with additive Gaussian noise N(x; 0, σ2

eff(x)) with zero mean and spatially variant
variance σ2

eff(x):

M̃L(x) ≈ ÃT (x) +N(x; 0, σ2
eff(x)) = ÃT (x) + σeff(x) ·N(x; 0, 1). (6.34)

Secondly, we extract the noise component from the stabilized image M̃L(x) and estimate
the noise map out of Gaussian data (the block Gaussian homomorphic noise estimation
in Fig. 6.4). We adapt Gaussian homomorphic approach recently presented in section 5.3.1,
since it has proved its accuracy and robustness. Therefore, the noise map can be estimated
as follows:

σ̂eff(x) =
√

2 exp
(

LPFσf

{
log

∣∣∣M̃LC(x)
∣∣∣}+

γ

2

)
, (6.35)

where LPFσf is a low-pass filter with standard deviation σf, γ is the Euler-Mascheroni con-
stant and M̃LC(x) = E{M̃L(x)} is a centered version of the image M̃L(x), where E {·} is the
expectation operator that must be locally approximated for practical implementation.

6.4.2 Noise extraction procedures

The second step of the algorithm presented in section 6.4.1 requires the centering procedure
of the data M̃L(x) prior to the final noise estimation. Although many edge-preservation and
AWGN-compliant solutions can be arranged here, we employ the SWT of the image M̃L(x)
using HH subband at the scale s = 1. Again, we refer to the diagonal details coefficients:

M̃LC(x) = ((M̃L ~ g
(r))~ g(c))(x), (6.36)
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where “~” denotes the convolution operator. The convolution procedure (6.36) is performed
with separable one-dimensional high-pass filter g using db7 wavelet (see Fig.5.6). The first
convolution is applied along the rows of the image M̃L(x) (denoted as g(r)), while the second
convolution is applied along the columns of the pre-filtered image (denoted as g(c)).

Once again, we are not obligated to use the SWT to extract the noise component from the
stabilized image M̃L(x) (6.34). However, by employing the SWT we can relatively compare
our proposal with recent advances in noise estimation for GRAPPA MRI presented in Aja-
Fernández and Vegas-Sánchez-Ferrero 2015, i.e., we can relate the estimation results with
and without the variance-stabilization step.

6.4.3 Local SNR estimation

The presented numerical VST procedure requires the SNR to be known in advance. For
accelerated parallel GRAPPA MRI reconstructed with SoS, the SNR map of the magnitude
image ML(x) is defined as in eq. (6.31). The denominator of eq. (6.31) can be estimated using
the procedure proposed by Aja-Fernández et al. 2013. However, we still need the method to
obtain the estimate of the underlying noise-free signal AT (x). Different techniques for nc-χ
data can be arranged here including LMMSE estimator (Brion et al. 2011), ML estimator
(Rajan et al. 2012) and the majorize-minimize framework (Varadarajan and Haldar 2015).
In this work, we use a local mean of the magnitude image ML(x) as the estimator of the
underlying signal AT (x) since it is computationally tractable approach.

6.5 Materials and methods

In this section we present the data sets employed in the evaluation process of our proposal
and we provide the details of the methods arranged in our experiments.

6.5.1 Materials

To verify our proposal in non-stationary nc-χ noise estimation, we carry out numerical ex-
periments using both synthetic and real GRAPPA MRI data obtained with SoS formula.
Below, a brief description of the data used in our experiments is given.

1. Synthetic MR images: three brain MRI slices at different transverse planes are used,
i.e., T1-, T2- and PD-weighted MRI data (all with INU=0%). The data are free of noise,
the background areas are set to zero, the slice thickness equals 1 mm and the intensity
range of the images is normalized to [0 – 255] (Fig. 6.5a–c). The synthetic data sets
come from BrainWeb simulated database (Collins et al. 1998). These images are used
then to simulate synthetic noisy accelerated parallel GRAPPA MRI data with SoS
reconstruction.

2. Synthetic GRAPPA MR images2: simulated noisy T1-, T2- and PD-weighted GRAPPA
MRI data with SoS reconstruction. The Cartesian GRAPPA reconstruction uses eight
receiver coils (L = 8) with correlations between k–th and l–th receiver coil (k 6= l)
defined to be ρkl, the variance of the noise is set to σ2

l = σ2 for all receiver coils
(the noise is the same for all L coils) and GRAPPA reduction factor is set to r = 2
(Fig. 6.5d–f). The k–space is uniformly sampled and 32 ACS lines are preserved. These
data are used for qualitative evaluation of noise estimation methods.

2We used Aja-Fernández’s parallel MRI simulator available at https://www.mathworks.com/
matlabcentral/fileexchange/36893-parallel-mri-noisy-phantom-simulator.

https://www.mathworks.com/matlabcentral/fileexchange/36893-parallel-mri-noisy-phantom-simulator
https://www.mathworks.com/matlabcentral/fileexchange/36893-parallel-mri-noisy-phantom-simulator
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Figure 6.5: Data sets used in the experiments: (a) synthetic noise-free T1-, (b) T2- and (c) PD-
weighted MRI data, (d) simulated noisy T1-, (e) T2- and (f) PD-weighted GRAPPA MRI
data (all with L = 8 and r = 2), (g) real noisy T1-weighted FGRE GRAPPA MRI phantom
(L = 8, r = 2), (h) in vivo noisy T1-weighted FSPGR GRAPPA MRI brain data (L = 8,
r = 2) and (i) in vivo noisy T1-weighted FSPGR GRAPPA MRI brain data (L = 8, r = 4).

3. Real GRAPPA MRI phantom: one hundred repetitions of T1-weighted scan of a phan-
tom were performed using GE Signa 1.5T EXCITE 12m4 scanner (General Electric
Healthcare, Waukesha, WI) with an eight-channel head coil using Fast Gradient Echo
(FGRE) sequence, matrix size equals 128×128, TR=8.6 ms / TE=3.38 ms, slice thick-
ness equals 1 mm, FOV is set to FOVx × FOVy = 21 × 21 cm and the reduction
factor equals r = 2 (Fig. 6.5g). The k–space is uniformly sampled and 32 ACS lines
are preserved.

4. In vivo GRAPPA MRI brain data: two T1-weighted scans of the brain in transverse
plane are acquired by GE 3.0T scanner provided with an eight-channel head coil. The
data sets were acquired using Fast Spoiled Gradient Echo (FSPGR) sequence, matrix
size equals 256×256, TR=300 ms / TE=10 ms, FOV is set to FOVx×FOVy = 22×22
cm and the reduction factor equals r = 2/r = 4 (Fig. 6.5h, i). The k–space is uniformly
sampled and 64 ACS lines are preserved. This data come from PULSAR parallel MRI
simulator (Ji et al. 2007).

6.5.2 Methods

For the sake of evaluation of our proposal, we use four noise estimation methods, which
assume the noise component to be non-stationary Gaussian (Goossens et al. 2006, Pan et al.
2012, Maggioni and Foi 2012 and Aja-Fernández and Vegas-Sánchez-Ferrero 2015) and one
method dealing with non-stationary nc-χ distributed noise (Tabelow et al. 2015). For more
details about these noise estimation algorithms, see section 4.3.1.
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The state-of-the-art Gaussian methods are used twice during the evaluation process:

1. the algorithms are applied directly to the magnitude GRAPPA MRI data,

2. the VST given by eq. (6.29) is applied to the magnitude GRAPPA MRI data prior to
noise estimation.

All Gaussian methods employed in the evaluation procedure retrieve spatially variant
noise pattern from a single image without any additional information about the acquisition
process. One parameter is needed by Tabelow et al. 2015 – the number of receiver coils L,
which is assumed to be constant over the FOV.

Regarding our proposal, we use the same parameters as with Rician distributed noise:

• the SWT given by eq. (6.36) uses db7 wavelet,

• the low pass filter (6.35) uses the parameter σf = 3.4 to generate circularly symmetric
Gaussian mask,

• the noise estimation is performed in a 5× 5 window,

• the estimation of local SNR is carried out in a 5× 5 window.

Finally, note that we used morphological operators for the detection procedure of the
foreground area of the image (see section 4.4 for more details).

6.6 Experimental results and discussion

In this section, we numerically examine proposed VSTs for nc-χ distribution and we quanti-
tatively/qualitatively evaluate noise estimation algorithms. At first, we carry on some statis-
tical experiments to verify the underlying assumption of Gaussianity of the noise in variance-
stabilized data. Then, we show the applications of VST for nc-χ distributed data in context
of spatially variant noise estimation for GRAPPA MRI data obtained with SoS.

6.6.1 Statistical analysis of VSTs

In this section, we evaluate the proposed asymptotic and numerical variants of VST for nc-χ
distributed data. To this end, the following experiments are considered:

1. Chi-square goodness-of-fit test (χ2-test) and Anderson-Darling (AD) test to verify if
the noise in variance-stabilized nc-χ data follows the standard normal distribution.

2. Quantile-quantile (QQ) plots of the noise in variance-stabilized nc-χ data.

In the first statistical experiment, we verify the normality of the noise in variance-
stabilized nc-χ data. To extract the noise component from variance-stabilized nc-χ dis-
tributed signal, we use the SWT with high-pass filter associated with db7 wavelet (see
Fig. 5.6). We perform 10000 repetitions of χ2-test3 and AD test4 for simulated nc-χ data
with SNR ∈ [0; 3] and different number of receiver coils L ∈ {8, 16, 32, 64}.

The null hypothesis H0 of statistical tests states that “the noise in variance-stabilized
nc-χ data follows standard normal distribution”, while the alternative hypothesis H1 is the
opposite. The significance level equals α = 0.05 and sample size is N = 256 for both tests.
The pipeline of the experiment is summarized in Fig. 6.6. We additionally compared our
proposals to Koay’s mapping technique presented in section 6.2. The parameters AT and σ

are exactly known for the methods in this experiment.
3The routine chi2gof is used in the simulation (The MathWorks, Inc., Natick, MA).
4The routine adtest is used in the simulation (The MathWorks, Inc., Natick, MA).
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Figure 6.6: The evaluation scheme of the noise component in variance-stabilized nc-χ data for
a given SNR level (SNR = AT /

√
Lσ2) and the number of receiver coils L using a statistical

hypothesis testing.

The acceptance ratios of H0 for the experiment in terms of SNR of the signal are depicted
in Fig. 6.7 and Fig. 6.8. The results show the high performance of the robust numerical
model regardless of SNR level, i.e., at least 92.70% and 98.98% acceptance ratios for χ2-test
and AD test, respectively. Nevertheless, the asymptotic model tends to be also valid in
terms of statistical hypothesis testing for increasing number of receiver coils, especially for
L = 32 and L = 64. Clearly, the noise component in variance-stabilized nc-χ data can be
treated as Gaussian distributed and the algorithms assuming Gaussianity of the data can
then be employed. Note that the acceptance ratios of χ2-test are lower than the acceptance
ratios of AD tests, since the χ2-test depends on the data binning process. Finally, note
that the proposed numerical model outperforms Koay’s mapping technique for all the cases.
Furthermore, the asymptotic model shows also much better performance for L ­ 16 than
Koay’s technique.

In the second statistical experiment, we show QQ plots for the noise component
in variance-stabilized nc-χ data by robust numerical model. In comparison to the previous
experiments, the purpose of this evaluation is to show the Gaussianity of the noise in variance-
stabilized nc-χ data rather than compare the VSTs models to each other. To this end, we
generate the samples of size N = 256 from nc-χ distribution with SNR ∈ {1, 2, 5} and
different number of receiver coils L ∈ {8, 16, 32, 64}. Then, we relate the quantiles of standard
normal distribution (theoretical quantiles) to the quantiles of the noise in variance-stabilized
nc-χ samples using the robust numerical VST model (empirical quantiles).

The results of the experiment show that the quantiles approximately lie on the reference
line y = x (see Fig. 6.9), assessing that the noise in variance-stabilized nc-χ data comes from
the standard normal distribution N (0, 1). Note that our proposal does not interfere with
the signal characterized by SNR = 5, where the nc-χ data can be approximated well-enough
using Gaussian distribution. Such approximation of GRAPPA MRI signal for higher SNR
was proposed by Aja-Fernández and Vegas-Sánchez-Ferrero 2015.
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Figure 6.7: (a–e) Acceptance ratios of χ2-test of the noise component in variance-stabilized nc-χ distributed data using asymptotic and numerical
models for different number of receiver coils L. Our proposals are compared then to Koay’s mapping technique (6.4). (f–h) Zoomed out plots from
figures (c–e).
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Figure 6.8: (a–e) Acceptance ratios of AD test of normality of the noise component in variance-stabilized nc-χ distributed data using asymptotic and
numerical models for different number of receiver coils L. Our proposals are compared then to Koay’s mapping technique (6.4). (f–h) Zoomed out
plots from figures (c–e).
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Figure 6.9: QQ plots of the noise component in variance-stabilized nc-χ distributed data for different number of receiver coils L ∈ {8, 16, 32, 64} and
SNR level: (a–d) SNR = 1, (e–h) SNR = 2 and (i–l) SNR = 5. The red lines indicate the reference y = x. The sample size equals N = 256 for all
experiments.
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6.6.2 Synthetic GRAPPA MRI data experiments

In this section, we present three experiments with simulated T1-, T2-, and PD-weighted
accelerated parallel GRAPPA MRI data reconstructed with SoS:

1. Quantitative evaluation of the methods in terms of the underlying noise variance
σ2
l = σ2. The underlying noise variance is assumed to be the same for all L coils.

2. Quantitative evaluation of the methods in terms of the correlation ratio between the
receiver coils ρkl = ρ. The correlation ratio is the same between the receiver coils.

3. Qualitative evaluation of the methods.

For all experiments presented in this section, we employ synthetic BrainWeb noise-free
T1-, T2- and PD-weighted MRI transverse slices recently presented in section 6.5.1 (see
Fig. 6.5a–c). We simulate eight coils (L = 8) noisy GRAPPA MRI data with underlying
noise level σ and correlations between receiver coils given by ρ. The k–space is uniformly
sampled in frequency encoding direction and it is uniformly subsampled by the factor of
r = 2 in phase encoding direction keeping 32 ACS lines. The local SNR maps are exactly
known for this experiment. Finally, the reference noise patterns obtained from Aja-Fernández
et al. 2011 are used to evaluate the accuracy of the estimators using the parameters RE(x)
(4.63) and VAR(x) (4.64). Note that we additionally examine the state-of-the-art Gaussian
methods combined with numerical VST procedure (6.29).

In the first noise estimation experiment, the behaviour of noise estimators for differ-
ent values of the underlying noise standard deviation σ is tested. The correlations between
the receiver coils are set to ρ = 0.1 for all simulations. One hundred repetitions (R = 100) of
the estimation procedure are considered for each algorithm, noise level σ and contrast type
examination (T1-, T2-, and PD-weighted scan). The estimation results are then averaged
along the replicas, and the final values of RE and VAR are calculated as spatial averages of
the parameters RE(x) and VAR(x) over the foreground area of the image Ω∆ (see section 4.4
for more details about calculating the parameters RE and VAR).

The results of the experiment are shown in Fig. 6.10. The first observation is clear:
applying the VST procedure prior to noise estimation using Gaussian method leads to sig-
nificant improvement of the results. The higher the underlying noise level σ is, the larger
difference in the parameter RE between a non-variance-stabilized and a variance-stabilized
Gaussian estimator is observed. Contrary, the methods coincide for low value of noise stan-
dard deviation σ. These results are obvious, since the nc-χ distribution approximately follows
Gaussian distribution for SNR→∞. The proposed methodology is the one with the great-
est performance, showing almost constant values of RE and VAR for the whole range of the
parameter σ. Finally, note that the method by Tabelow et al. 2015, initially proposed to deal
with non-stationary nc-χ distributed data, generally shows a better performance in terms of
the parameter RE than Gaussian methods. However, it is still outperformed by our proposal
(Fig. 6.10a, c, e) and some other Gaussian methods supported by the VST procedure, i.e.,
Pan et al. 2012 (Fig. 6.10a, c), Maggioni and Foi 2012 (Fig. 6.10a and Fig. 6.10c for higher
noise level σ).

In the second noise estimation experiment, we quantitatively investigate the be-
haviour of noise estimators for different values of correlation ratio between receiver coils. All
the reconstruction details of GRAPPA algorithm are the same as in the first experiment
except the underlying noise variance, which is fixed now to σ2 = 225 for all simulations.
One hundread repetitions of the estimation procedure are considered for each algorithm,
correlation ratio ρ and contrast type examination.
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Figure 6.10: Comparison of noise estimators for synthetic GRAPPA MRI data contamined by
non-stationary nc-χ distributed noise in the function of σl = σ. The reconstructions use eight
receiver coils (L = 8), subsampling rate r = 2 and the correlations between the coils equals
ρ = 0.1. Each plot presents the averaged results over R = 100 repetitions of the experiment.
The first column shows spatially averaged relative error of the estimators, RE, while the
second column presents spatially averaged variance of the estimators, VAR. The first row
corresponds to T1-, the second row to T2- and the third one to PD-weighted GRAPPA MRI
data. The acronym “VST + ” means that the variance-stabilizing transformation is applied
to the magnitude data before the estimation process.



6.6. Experimental results and discussion 120

, ,

Figure 6.11: Comparison of noise estimators for synthetic GRAPPA MRI data contamined
by non-stationary nc-χ distributed noise in the function of ρkl = ρ. The GRAPPA recon-
structions use eight receiver coils (L = 8), subsampling rate r = 2 and the underlying noise
variance equals σ2 = 225. Each plot presents the averaged results over R = 100 repetitions
of the experiment. The first column shows spatially averaged relative error of the estima-
tors, RE, while the second column presents spatially averaged variance of the estimators,
VAR. The first row corresponds to T1-, the second row to T2- and the third one to PD-
weighted GRAPPA MRI data. The acronym “VST + ” means that the variance-stabilizing
transformation is applied to the magnitude data before the estimation process.
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The parameters RE and VAR obtained in this experiment are shown in Fig. 6.11. Again,
the variance-stabilization procedure improves the performance of any Gaussian estimator
for the whole range of the parameter ρ ∈ [0; 1]. Finally, we point out that our proposal
shows a great performance in comparison to the state-of-the-art methods when the variance-
stabilization procedure is applied, i.e., it has the lowest RE and almost constant VAR pa-
rameter over all ρ levels.

As the third noise estimation experiment, we visually compare the estimated noise
patterns and the corresponding REs of the estimators for simulated GRAPPA MRI data,
i.e., T1-, T2- and PD-weighted transverse slices (see Fig. 6.5d–f). We fixed the underlying
noise variance to σ2 = 225 and the correlation ratio between receiver coils to ρ = 0.1. Other
parameters of the image reconstruction procedure are the same as presented in the intro-
ductory part of this section. The reference (theoretical) noise maps are obtained according
to Aja-Fernández et al. 2011. To evaluate the estimators, we use all non-stationary noise
estimation algorithms engaged in previous quantitative experiments. The estimation with
Gaussian methods is repeated then after applying the VST. Moreover, we refer to a silver
standard method being a pointwise sample standard deviation calculated along twenty five
(R = 25) repetitions (see eq. (4.61)).

The estimation results and the corresponding REs of the estimators for this experiment
are shown in Figs. 6.12–6.14. Note that we use a binary mask to hide the parameter RE(x) for
the background areas since it is not representative. The first conclusion is clear: in all the cases
the use of the VST prior to a Gaussian estimation improves the accuracy of the estimator,
while employing a Gaussian method directly on the non-stationary nc-χ distributed data
leads to the underestimated results.

Similarly to the results obtained for SENSE MRI data, Goossens et al. 2006 lead to
highly granular noise patterns, whether the method uses the VST or not. On the other hand,
Pan et al. 2012 and Maggioni and Foi 2012 preceded by the VST show more reliable and
less granular results in comparison with Goossens et al. 2006. Nevertheless, the estimators
are still affected by the skull egdes (Fig. 6.12h,j and Fig. 6.14j) and the inhomogeneities of
the tissues introduce a bias to the estimates (Fig. 6.13j). Supprisingly, a similar behaviour
can be observed for Tabelow et al. 2015 (especially for T1-weighted image; see Fig. 6.12b).
Although the method by Tabelow et al. 2015 benefits from the nc-χ model, it assumes the
number of receiver coils to be constant across the image, i.e., L(x) ≡ const5. Note that
the relative error of standard deviation along the variance-stabilized samples, RE(x), does
not exhibit the influence of the MR signal (Figs. 6.12d, 6.13d, 6.14d). Finally, the hereby
proposed method is the one showing the greatest fidelity with the ground truth, avoiding the
granularity in the estimation and the influence of the edges (Figs. 6.12l, 6.13l, 6.14l).

6.6.3 Real GRAPPA MRI data experiments

In this section, we present qualitative evaluations of the methods for real accelerated parallel
GRAPPA MRI data reconstructed with SoS formula. In comparison to the experiments
presented in section 6.6.2, the reference maps are not available here and therefore we cannot
use the quantitative measures.

In the first noise estimation experiment, we evaluate the estimators using real
T1-weighted FGRE GRAPPA MRI phantom data (see section 6.5.1 for more details). We
refer to silver standard method (4.61) being a pointwise sample standard deviation along
one hundred (R = 100) acquisitions of the same phantom.

5The authors suggest using the reduced value of L (or simply assume L(x) ≡ 1) to avoid a model misspec-
ification (see the section 2.6 in Tabelow et al. 2015 for more details).
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Figure 6.12: Noise estimation results and the relative errors of the estimators for synthetic
T1-weighted GRAPPA MR image reconstructed from eight receiver coils (L = 8), the cor-
relation ratio between receiver coils ρ = 0.1 and the underlying noise variance σ2 = 225
(SNRmax = 6.92) (Fig. 6.5d): (a) the ground truth (Aja-Fernández et al. 2011), (b) Tabe-
low et al. 2015, (c) standard deviations along the replicas (R = 25), (d) VST + standard
deviations along the replicas (R = 25), (e) Goossens et al. 2006, (f) VST + Goossens et al.
2006, (g) Pan et al. 2012, (h) VST + Pan et al. 2012, (i) Maggioni and Foi 2012, (j) VST +
Maggioni and Foi 2012, (k) Aja-Fernández and Vegas-Sánchez-Ferrero 2015 and (l) VST +
Aja-Fernández and Vegas-Sánchez-Ferrero 2015 (our proposal).
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Figure 6.13: Noise estimation results and the relative errors of the estimators for synthetic
T2-weighted GRAPPA MR image reconstructed from eight receiver coils (L = 8), the cor-
relation ratio between receiver coils ρ = 0.1 and the underlying noise variance σ2 = 225
(SNRmax = 6.58) (Fig. 6.5e): (a) the ground truth (Aja-Fernández et al. 2011), (b) Tabelow
et al. 2015, (c) standard deviations along the replicas (R = 25), (d) VST + standard de-
viations along the replicas (R = 25), (e) Goossens et al. 2006, (f) VST + Goossens et al.
2006, (g) Pan et al. 2012, (h) VST + Pan et al. 2012, (i) Maggioni and Foi 2012, (j) VST +
Maggioni and Foi 2012, (k) Aja-Fernández and Vegas-Sánchez-Ferrero 2015 and (l) VST +
Aja-Fernández and Vegas-Sánchez-Ferrero 2015 (our proposal).
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Figure 6.14: Noise estimation results and the relative errors of the estimators for synthetic
PD-weighted GRAPPA MR image reconstructed from eight receiver coils (L = 8), the cor-
relation ratio between receiver coils ρ = 0.1 and the underlying noise variance σ2 = 225
(SNRmax = 6.86) (Fig. 6.5f): (a) the ground truth (Aja-Fernández et al. 2011), (b) Tabelow
et al. 2015, (c) standard deviations along the replicas (R = 25), (d) VST + standard de-
viations along the replicas (R = 25), (e) Goossens et al. 2006, (f) VST + Goossens et al.
2006, (g) Pan et al. 2012, (h) VST + Pan et al. 2012, (i) Maggioni and Foi 2012, (j) VST +
Maggioni and Foi 2012, (k) Aja-Fernández and Vegas-Sánchez-Ferrero 2015 and (l) VST +
Aja-Fernández and Vegas-Sánchez-Ferrero 2015 (our proposal).
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Figure 6.15: Visual inspections of the methods for real T1-weighted FGRE GRAPPA MRI
data: (a) Goossens et al. 2006, (b) VST + Goossens et al. 2006, (c) Pan et al. 2012,
(d) VST + Pan et al. 2012, (e) Maggioni and Foi 2012, (f) VST + Maggioni and Foi 2012,
(g) standard deviations along the replicas (R = 100), (h) VST + standard deviations along
the replicas (R = 100), (i) Aja-Fernández and Vegas-Sánchez-Ferrero 2015 and (j) VST +
Aja-Fernández and Vegas-Sánchez-Ferrero 2015 (our proposal).
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Figure 6.16: Visual inspections of the methods for in vivo T1-weighted FSPGR GRAPPA
MRI brain data for r = 4 and r = 2: (a) Goossens et al. 2006, (b) VST + Goossens et al.
2006, (c) Pan et al. 2012, (d) VST + Pan et al. 2012, (e) Maggioni and Foi 2012, (f) VST +
Maggioni and Foi 2012, (g) Aja-Fernández and Vegas-Sánchez-Ferrero 2015 and (h) VST +
Aja-Fernández and Vegas-Sánchez-Ferrero 2015 (our proposal).
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We calculate twice this pseudo-reference map along the samples:

1. we apply the estimator (4.61) along the replicas,

2. we stabilize the data using (6.29) and then we apply the estimator (4.61) to the
variance-stabilized images.

The results of the estimation process are depicted in Fig. 6.15. Generally, the behaviour of
the estimators are similar to those presented for synthetic GRAPPA MRI data. In comparison
with previous qualitative experiments (see Figs. 6.12–6.14), the evaluated image6 does not
consist tissues inhomogeneities inside the phantom, and therefore the estimators should not
be affected by the outliers. Nevertheless, the edges of the phantom are still visible in retrieved
noise patterns for some methods, e.g., Pan et al. 2012 (Fig. 6.15c, d) and Maggioni and Foi
2012 (Fig. 6.15e, f). Note also that Pan et al. 2012 and Maggioni and Foi 2012 provide
highly underestimated noise patterns, when compared to silver standard references. Again,
our proposal exhibits best performance, improving the results of the estimator presented by
Aja-Fernández and Vegas-Sánchez-Ferrero 2015.

In the second noise estimation experiment, we compare the performance of the esti-
mators for PULSAR in vivo T1-weighted FSPGR GRAPPA MRI brain data (see section 6.5.1
for more details). In comparison to the previous experiments, neither a reference map nor
a pseudo-reference map is available here. Consequently, a subjective comparison between the
methods is the only the possible variant. Then, the results can be confronted to the previous
evaluations, if they produce reasonable results.

The results from this experiment are shown in Fig. 6.16. The results are fully consistent
with previous qualitative evaluations of the estimators, i.e., the employment of the VST pro-
cedure prior to Gaussian estimator strengthened observed noise maps, but it simultaneously
intensified border effects (Fig. 6.16d, f). Regarding our proposal, it avoids granularities of
the estimates as usually observed with Goossens et al. 2006 and it attenuates border effects
coming from the skull areas (compare to Pan et al. 2012 and Maggioni and Foi 2012).

Finally, note although the results are compatible with previous visual evaluations, mul-
tiple acquisitions of the brain should be also considered to confirm the results from this
experiment. However, due to a long scan time and the lack of patient’s comfort, it might be
a difficult task to acquire the data in real conditions.

6.6.4 Evaluation against the estimator along the samples

In this section, we evaluate our proposal and state-of-the art methods using a single GRAPPA
MR image in relation to the estimation procedure along the replicas. Specifically, we estimate
the noise pattern from a single image, and then we compare the results with the estimator
(4.61) for the increasing number of repetitions (acquisitions).

In the first experiment, we employ simulated synthetic T1-weighted GRAPPA MRI
data with the following parameters L = 8, r = 2 and ρ = 0.1. The k–space domain is
uniformly sampled and 32 ACS lines are preserved. The SoS formula is used to reconstruct
the magnitude data. Eighty GRAPPA MRI reconstructions (R = 80) with underlying noise
variances σ2 = 100 and σ2 = 400 are considered for this experiment. The results of the
evaluation process are depicted in Fig. 6.17. The horizontal (constant) lines refer to spatially
averaged RE(x) (i.e., the parameter RE) calculated from a single noise map. Two versions of
the estimator (4.61) for the increasing number of samples are considered: without and with the

6The Gaussian estimators use only a single slice, while the silver standard method arranges stacked images
to provide a pseudo-reference map.
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Figure 6.17: Comparison of spatially averaged relative error RE(x) between our proposal and
state-of-the-art methods using a single synthetic T1-weighted GRAPPA MRI slice (Fig. 6.5a),
and the estimation along the increasing number of images (pointwise standard deviation along
the replicas). The underlying noise variance levels are: (a) σ2 = 100 and (b) σ2 = 400. Two
versions of Gaussian estimators are considered: without and with the variance-stabilizing
transformation (the acronym “VST +”).

VST procedure (6.29). The estimator (4.61) preceded by the VST mechanism needs at least
seventy replicas of the data to provide better results than our proposal from a single slice.
Note that this experiment not only shows the robustness of the proposed noise estimator,
but it particularly verifies the number of replicas, which must be taken into account when
providing a pseudo-reference map for real GRAPPA MRI acquisitions. Hence, the noise
patterns estimated from one hundred repetitions can be assumed to be relevant pseudo-
references for the first experiment presented in section 6.6.3 (see Fig. 6.15g, h).

In the second experiment, we calculate the ratio of pixels of real T1-weighted FGRE
GRAPPA MRI data, whose estimated variance from one single slice lays within the confidence
interval (CI) for increasing number of samples R (replicas). Clearly, we apply the VST (6.29)
and estimate the noise patterns using Gaussian estimators from one single image. Then,
we stabilize all replicas and pointwisely fit normal distributions for increasing number of
samples using ML approach7. If the underlying samples are i.i.d. and normally distributed
(i.e., Xi ∼ N (µ, σ2)), the statistics (R−1)s2/σ2 follows a χ2 distribution with (R−1) degrees
of freedom with s2 being a sample variance. Assuming that χ2

R−1,β is the β quantile of the
χ2 distribution with (R− 1) degrees of freedom the following formula holds:

P

(
χ2
R−1,1−α/2 ¬

(R− 1)s2

σ2 ¬ χ2
R−1,α/2

)
= 1− α, (6.37)

where P is the probability that the RV falls within a given range.
We construct now 100(1− α)% CI for the variance, when the underlying data are nor-

mally distributed:

(R− 1)ŝ2
R(x)

χ2
R−1,α/2

¬ σ̂2
eff(x) ¬ (R− 1)ŝ2

R(x)
χ2
R−1,1−α/2

, (6.38)

7The ML reduces to least squares estimation for Gaussian distributed data.
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Figure 6.18: (a) The ratio of pixels in the foreground area of T1-weighted FGRE GRAPPA
MRI phantom (Fig. 6.5g), whose estimated variance from one single slice lays within the
95% confidence interval (CI) for increasing number of samples R (replicas). (b) The visual
representation of the quantitative experiment and the percentage ratios for R = 10, R = 50
and R = 100: (I) VST + Goossens et al. 2006, (II) VST + Pan et al. 2012, (III) VST +
Maggioni and Foi 2012 and (IV) VST + Aja-Fernández and Vegas-Sánchez-Ferrero 2015
(proposed).

where ŝ2
R(x) is the sample variance obtained with the estimator (4.61) from R replicas of

the stabilized data at the location x. Note that contrary to CI for the mean, the CI for the
variance is skewed and it has the support on [0; ∞).

The quantitative and qualitative results of the experiment for α = 0.05 (95% CI) are
shown in Fig. 6.18. Note that the ratios of the pixels laying inside the confidence inverval
(6.38) concern the foreground area of the phantom only. The results show that our proposal
outperforms state-of-the art methods for all number of samples R, which are taken into
account by the estimator (4.61). The proposal reaches the ratios 92.88%, 85.02% and 76.74%
for R = 10, R = 50 and R = 100, respectively. In other words, the new spatially variant
noise estimation method provides the noise pattern from a single image, where X% of the
estimated points from the foreground area lay inside the CIs constructed for R samples.

These two experiments evidence that the spatially variant noise patterns can be esti-
mated from non-stationary nc-χ distributed data using only a single image. Furthermore,
our proposal achieves it in best way when compared to state-of-the-art methods.

6.7 Conclusions and remarks

In this chapter, we proposed new variance-stabilizing transformations for nc-χ distributed
random variable. The transformations enable to convert a nc-χ distributed random variable
into another random variable, where the noise component can be assumed to be Gaussian
distributed. In other words, the transformations allows removing signal-dependency of the
noise, i.e., the variance-stabilized data no longer depends on the underlying amplitude sig-
nal AT .
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Two variants of the variance-stabilizing transformation were proposed:

1. the asymptotic model (6.21) inferred from the first-order Taylor expansion of the
variance-stabilizing function fstab(M2

L|σ, L),

2. the robust numerical model (6.28), which allows stabilizing the variance for the whole
range of SNRs, i.e., from very low SNRs – c-χ distribution to very high SNRs –
Gaussian distribution.

The variance-stabilizing transformations were verified then with the mapping technique
from nc-χ to Gaussian distribution using a statistical hypothesis testing, i.e., χ2-test and
Anderson-Darling test. Statistical tests showed high acceptance ratios for the whole range
of SNR of the proposed numerical VST, i.e., at least 92.70% and 98.98% acceptances for
χ2-test and Anderson-Darling test, respectively. This means that the noise component in
variance-stabilized nc-χ data can be assumed to be Gaussian distributed.

Next, we presented signal-dependent non-stationary nc-χ distributed noise estimation
scheme in variance-stabilizing framework. This approach allows estimating spatially variant
noise component in non-stationary nc-χ distributed data like accelerated parallel GRAPPA
MRI obtained with SoS reconstruction. Our proposal uses the numerical VST to stabilize the
nc-χ data and Gaussian homomorphic filtering procedure to retrieve smooth and granularity-
free noise patterns. The noise estimation method is validated over simulated synthetic and
real accelerated parallel GRAPPA MRI examinations. The method was compared to
main state-of-the-art methods showing best performance among others for the
whole range of underlying noise standard deviation σ and correlation ratio be-
tween receiver coils ρ. The estimator was then verified using real accelerated parallel
GRAPPA MRI acquisitions proving reasonable results, when contrasted to the studies on
simulated synthetic data.

The proposed non-stationary nc-χ noise estimation scheme is characterized by the fol-
lowing advantages over state-of-the art methods:

• it does not require multiple acquisitions (like Veraart et al. 2013) or pre-scans to esti-
mate the noise pattern; a single image is sufficient to provide a reliable noise map,

• any technical details about the acqusition procedure like reconstruction coefficients for
GRAPPA MRI are not required (Aja-Fernández et al. 2014a),

• it is not affected by the granular effect (Goossens et al. 2006) or a bias coming from
the transitions between the tissues (Maggioni and Foi 2012, Pan et al. 2012),

• it does not involve computationally intensive approaches like weighted maximum like-
lihood estimation (Tabelow et al. 2015) or non-local scheme (Maggioni and Foi 2012),

• it uses exact theoretical model rather than Gaussian approximations (Goossens et al.
2006, Maggioni and Foi 2012, Pan et al. 2012) and consequently the noise estimation
algorithm is robust for the whole range of SNRs (from very low SNRs – non-stationary
c-χ distribution to very high SNRs – non-stationary Gaussian distribution).

Finally, it is worth mentioning that any Gaussian-compliant noise estimation method
presented in Chapter 4 can be arranged to retrieve spatially variant noise patterns in the
proposed variance-stabilizing framework. Furthermore, although the asymptotic model is
biased for low SNRs, it can be used in denoising procedures of nc-χ distributed data using
Gaussian filters.



Chapter 7

Final conclusions and remarks

The main assumption behind this PhD thesis was to estimate a spatially variant noise map
from a single MR image only without repeated scans or extra information needed about
the acquisition process. In this work, we particularly focused on non-stationary Rician and
non-stationary nc-χ distributed signals since we can find them in accelerated parallel MRI
acquisitions. As an application and proof of concept, we used SENSE MRI and GRAPPA
MRI with SoS reconstruction. These modalities allow obtaining the final MR image from sub-
sampled k–space raw MRI data if the redundant data from many receiver coils are available.
Consequently, the scan time is significantly reduced when compared to single-coil acquisition.
The SENSE and GRAPPA reconstructions, however, lead to non-stationarity of the noise in
the final magnitude data. In this thesis, we were interested in estimating the noise patterns
from a one single magnitude MR image.

Potential applications of the estimated noise patterns can be found at different stages of
MRI data processing pipeline including:

• adaptive noise-driven noise removal procedures (e.g., LMMSE estimator),

• parameters estimation in DTI/DKI (e.g., LMMSE and ML estimator),

• image segmentation using statistical models (e.g., mixture models),

• estimation of diffusion profiles from HARDI data,

• quality evaluation of the MRI data using SNR/CNR parameter.

The presented PhD thesis was divided into two parts: the background and the
contributions. In the background part of the thesis, we presented basic information
about nuclear magnetic resonance phenomena, image formation processes and statistical
distributions employed to model the MR signal. Then, we carried out an extensive review
of state-of-the-art methods in non-stationary Gaussian, Rician and nc-χ noise estimation
schemes intended for MRI, especially focusing on accelerated parallel MRI acqusitions. The
author identified main drawbacks of reviewed noise estimation methods particularly con-
sidering the methods estimating the noise pattern from a single image. The state-of-the-art
chapter indicates also the underlying criteria that should be met when proposing a new
or extending current noise estimation schemes to deal with non-stationarity of the noise
in Rician and nc-χ distributed signals. Furthermore, a comprehensive comparison of the
state-of-the-art included in Table 4.1 is intended to serve as a starting point for further
research in noise modelling in accelerated parallel MRI. We believe it allows selecting the
most relevant noise estimation solution for a particular research or clinical application.
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We pay attention that our proposals are not strictly limited to MRI and they can be
applied to other imaging techniques like synthetic aperture radar imaging, modelling the
intensity in speckle pattern phenomenon or modelling the fading channels in wireless com-
munication.

The second part of the PhD thesis is devoted to our contributions of which the most
important are:

1. Improved variance-stabilizing transformation for Rician distributed signal.
The proposed numerical optimized transformation changes Rician distributed random
variable to another random variable with a constant variate. This means that the
variance-stabilized Rician noise is no longer signal-dependent and it can be assumed to
be Gaussian distributed. Our proposal is robust for the whole range of SNRs, i.e., from
very low SNRs – Rayleigh distribution to very high SNRs – Gaussian distribution.

Our proposal was shown to outperform the state-of-the-art Foi’s numerical
models for Rician distributed data.

2. Asymptotic variance-stabilizing transformation for nc-χ distributed signal.
The analytically derived transformation changes squared nc-χ distributed random vari-
able to another random variable with a constant variate. Again, the variance-stabilized
nc-χ distributed noise is no longer signal-dependent and it can be treated as Gaussian
distributed. Contrary to Rician case, this transformation is reversible and it can be
implemented as a pointwise operator with the computational complexity of the order
of O(1) given the estimated effective parameters.

3. Robust numerical variance-stabilizing transformation for nc-χ distributed
signal.
The proposed numerical variance-stabilizing transformation improves the performance
of analytically derived asymptotic model for low SNRs. The numerical scheme allows
robustly stabilizing the nc-χ distributed signal for the whole range of SNRs, i.e., from
very low SNRs – c-χ distribution to very high SNRs – Gaussian distribution. In com-
parison to the asymptotic model, this transformation is no longer reversible.

Our proposal was shown to outperform the state-of-the-art Koay’s mapping
technique for nc-χ distributed data.

4. Spatially variant noise estimation scheme for Rician distributed data.
The proposed noise estimation scheme allows estimating spatially variant noise patterns
from non-stationary Rician distributed data. The noise estimation scheme employs
the proposed variance-stabilizing transformation for Rician distributed data to remove
the signal-dependency of the noise. Then, the Gaussian homomorphic filter retrieves
smooth and granularity-free noise pattern. This noise estimation method was used then
to obtain the noise patterns from accelerated parallel SENSE MRI acquisitions.

The proposed noise estimation approach was shown to outperform fourteen
state-of-the-art methods for the whole range od SNRs.

5. Spatially variant noise estimation scheme for nc-χ distributed data.
The proposed noise estimation scheme provides accurate estimation of noise pat-
terns from non-stationary nc-χ distributed data. Again, the scheme uses the variance-
stabilizing transformation (i.e., the robust numerical model for nc-χ distributed data)
and Gaussian homomorphic filter. The framework was used then to retrieve spatially
variant noise patterns from accelerated parallel GRAPPA MRI with SoS reconstruc-
tion.
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The proposed method was shown to outperform state-of-the-art methods
for the whole range od SNRs.

Moreover, we shown that Gaussian-compliant methods preceeded by the
variance-stabilizing transformation can be arranged to estimate spatially
variant noise patterns from non-stationary nc-χ distributed data. Note also
that each Gaussian noise estimation method, which is preceeded by the variance-
stabilizing transformation, provides the results not worse than those without the
stabilization step.

In this work, the following thesis was defined: “Maps of non-stationary noise generated
by parallel MRI reconstruction can be accurately estimated from a single acquisition without
any additional information needed”.

To prove this thesis, the author showed that the estimation of spatially variant noise
pattern from a one single image is possible. It was verified for non-stationary Rician and
non-stationary nc-χ distributed data with a particular application in SENSE MRI and
GRAPPA MRI with SoS reconstruction, respectively. The estimation can be done better
than the state-of-the-art methods for the whole range of SNRs. This was confirmed using
quantitative and qualitative experiments. Furthermore, the robustness of the proposals was
verified in comparison with silver standard methods, i.e., the results were confronted with
the methods estimating the noise patterns along multiple scans.

To sum up, the most important advantages of proposed spatially variant noise estimation
schemes over the state-of-the-art are:

1. the methods take signal-dependency of the noise into account rather than correction
factors or rough assumptions of Gaussianity,

2. the noise estimates are not affected by granular effects or a significant bias,

3. the estimators are robust for the whole range of SNRs,

4. the methods do not require repeated acquisitions, pre-scans, or a physical model of the
MRI data,

5. any additional information from the reconstruction process of the MRI data like sen-
sitivity profiles of the receiver coils (SENSE) or reconstruction coefficients (GRAPPA)
is no longer needed,

6. post-correction factors (Koay and Basser 2006, Manjón et al. 2015 or Aja-Fernández
et al. 2015b) are no longer required for Rician/nc-χ distributed data,

7. any Gaussian noise estimation method can be employed now in the VST framework
for spatially variant noise estimation in non-stationary nc-χ distributed data,

8. software implementations are straightforward since they are based on discrete convo-
lutions and pointwise operations,

9. finally, note that the variance-stabilizing frameworks open a new way of thinking
in MRI, where various data processing algorithms (e.g., image segmentation using
mixture models) can be performed in variance-stabilized domain of the MR image
rather than in the image domain using computationally intensive Rician/nc-χ schemes
or Gaussian approximations.
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VST
GRAPPA MRI data Gaussian-dedicated

algorithm inverse VST(nc-      noise)
Digital processed

GRAPPA MRI data

Figure 7.1: The data processing in a reversible variance-stabilization framework.

The future research directions in spatially variant noise estimation in MRI should pri-
marily focus on blind estimation procedures (estimation without any assumptions about the
noise distribution) or making use of the redundant information from the acquisition process,
e.g., diffusion data or successive dynamic image series.

Below, we characterize selected problems in statistical models of the noise in MRI and
noise estimation in non-stationary Rician and nc-χ distributed data which are still open:

1. A reversible VST for nc-χ distribution.
In (section 6), we derived the reversible asymptotic VST for nc-χ distribution using
squared random variable M2

L. Although the asymptotic methodology uses a closed-
form formula for the expectation operator and the variance of nc-χ2 distributed
random variable, it is biased for low SNRs.

In the future research, the unbiased reversible VST for nc-χ distribution should be
analytically derived. The asymptotic approximations of the expectation operator
E{ML} and the variance Var{ML} of nc-χ distributed random variable should be
used in the derivation procedure. Moreover, one might consider higher-order Taylor
expansions of the VST definition instead of the first order approximation. This
will avoid a systematic bias of the stabilizer for low SNRs as previously observed
for non-optimized variant of the VST. In comparison with our numerical VST,
this transformation will not depend on any optimization procedure or local SNR
estimation. Clearly, while the VST for nc-χ distribution allows transforming the noise
from nc-χ to Gaussian distribution, the inverse VST should enable to transform the
noise from Gaussian to nc-χ distribution.

A wide range of potential applications of unbiased reversible VST for nc-χ distribution
can be found in data processing from accelerated parallel MRI acquisitions, not only
in case of non-stationary nc-χ noise estimation. Specifically, one can adapt Gaussian-
dedicated noise removal or image resampling (upsampling) algorithms for GRAPPA
MRI data (obtained with SoS) in the pipeline as shown in Fig. 7.1. Such noise removal
procedures employing Rician VST framework have been proposed recently (see Mag-
gioni et al. 2013, Yang et al. 2015 and Zhang et al. 2015b).

2. Statistical modelling of non-Cartesian sampled accelerated parallel MRI
data.
All scientific reports considering both stationary and non-stationary noise estimation
in MRI assume Cartesian sampling of k−space domain. This enable to define exact
statistical model of the final magnitude data coming from single-coil (Gudbjarts-
son and Patz 1995), multiple-coil (Constantinides et al. 1997, Aja-Fernández and
Tristán-Vega 2012 and Aja-Fernández et al. 2013), and accelerated parallel SENSE
MRI and GRAPPA MRI (Aja-Fernández et al. 2011, Aja-Fernández et al. 2014b and
Aja-Fernández et al. 2014a). Even the image is reconstructed by a non-linear POCS
algorithm (Sabati et al. 2013), the Cartesian sampling of the raw MR signal is still
assumed.
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Figure 7.2: Non-Cartesian sampling trajectories of MR signal in k–space domain: (a) polar,
(b) zig-zag, and (c) spiral.

As other than Cartesian sampling trajectories of k–space domain get more attention
in clinical and research accelerated parallel MRI examinations (Lustig and Pauly 2010,
Weller et al. 2014, Wright et al. 2014), the future research should focus on analysis of
statistical models, which potentially can be employed to approximate noisy magnitude
MR signal obtained from accelerated parallel MRI reconstructions with non-Cartesian
sampling of k–space domain (see Fig. 7.2).

Note that the results coming from this research may be the following:

• The Rician and nc-χ distributions are roughly correct for the representation of
magnitude non-Cartesian accelerated parallel MRI data.

• The Rician and nc-χ models need a correction factor, e.g., a similar one as pro-
posed by Aja-Fernández et al. 2011 to adapt nc-χ model in context of GRAPPA
MRI with SoS reconstruction.

• Other statistical models fit the data better than Rician and nc-χ models.

3. The analysis of intensity non-uniformity on statistical properties of the
noise.
In this thesis we employed synthetic T1-, T2- and PD-weighted MRI data with INU=0%
to quantitatively evaluate the estimators. Since the non-uniformity of intensity of the
magnitude MR signal can be observed in real acquisitions (see Fig. 5.7g), it might be
interesting to examine this effect on statistical properties of the signal. Recently, similar
analyses were performed in context of modelling the statistical texture properties in
magnitude MRI data (see Materka and Strzelecki 2015). Another interesting problem
might be the evaluation of popular intensity non-uniformity correction techniques on
statistical properties of the noise in magnitude MRI data (e.g., Vovk et al. 2007).

4. The non-stationary signal-dependent Rician/nc-χ noise estimation for DTI.
The diffusion-weighted accelerated parallel MRI examinations are particularly prone to
noise due to involuntary motions of human body (Anderson 2001, Tristán-Vega et al.
2012a). Consequently, the noise affects also the underlying fibre structure derived from
diffusion tensor tractography algorithms. The future research should focus on non-
stationary Rician/nc-χ noise estimation from redundant diffusion accelerated parallel
MRI data. Since the spatially variant noise pattern is retrieved, it can be used for
noise-driven diffusion tensor estimation.
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5. A fast implementation of the noise estimation procedure.
In this thesis we were considering single slices of MRI data. Since clinical applications
usually arrange a whole stacked dataset (e.g., diffusion images to reconstruct the fiber
structure of the brain/spine), the noise estimation method should provide the results
for each slice individually. Consequently, software implementations of some noise es-
timation methods might no longer be applicable for real-time imaging. To speed-up
the computations a GPU with OpenCL/CUDA can be employed as the implemen-
tation platform of noise estimation algorithms. Finally, note that recent advances in
cross platform acceleration of computer vision algorithms like OpenVX standard from
Khronos Group1 allows preparing a platform-independent source code.

6. A blind noise estimation procedure.
The main assumption behind all noise estimation algorithms in MRI is that the statis-
tical model of the noise is known in advance or assumed to be Gaussian (see Table 4.1
in section 4). The future research should involve a blind noise estimation procedure,
i.e., the estimation without any a priori assumptions about the acquisition details or
distributional properties of the noise.

Two problems must be addressed here:

• the detection of stationarity/non-stationarity of the noise,

• the identification of statistical distribution of the underlying noise.

Note that two works on blind noise estimation were already proposed – Pan et al.
2012 and Aja-Fernández and Vegas-Sánchez-Ferrero 2015. Nevertheless, both methods
assume that MR signal can be approximated by Gaussian distribution. This assumption
leads to highly biased noise map estimates for low SNRs as shown in Chapter 6.

1https://www.khronos.org/

https://www.khronos.org/
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Appendix

A.1 The Marcum Q-function definition for nc-χ distribution

In this appendix, we show a representation of a Marcum Q-function for nc-χ distribution.
Let us recall the PDF of a real-valued nc-χ distributed random variable ML (3.25):

p(ML|AT , σ, L) =
A1−L
T

σ2 ML
L exp

(
−M

2
L +A2

T

2σ2

)
IL−1

(
ATML

σ2

)
,ML ­ 0, (A.1)

where ML is the CMS (2.15), σ2 is the underlying noise variance, L is the number of receiver
coils, AT is the noise-free signal and Ik(·) is the modified Bessel function of the first kind
and k–th order. The CDF of nc-χ distributed random variable ML is given then as follows:

FML
(m|AT , σ, L) =

∫ m

0
p(M̃L|AT , σ, L) dM̃L

=
∫ m

0
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T

2σ2
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(
AT M̃L

σ2

)
dM̃L.

(A.2)

Using a substitution t = M̃L
σ and basic integral properties, we express eq. (A.2) as follows:

FML
(m|AT , σ, L) = 1−

(
σ

AT

)L−1 ∫ ∞
m
σ

tL exp

(
−σ

2t2 +A2
T

2σ2

)
IL−1

(
AT t

σ

)
dt

= 1−QL
(
AT
σ
,
m

σ

) (A.3)

where QL(·, ·) is called the generalized Marcum Q-function of L–th order. �
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