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ABSTRACT

Registration of diffusion weighted datasets remains a challenging task in the process of

quantifying diffusion indexes. Respiratory and cardiac motion, as well as echo-planar

characteristic geometric distortions, may greatly limit the accuracy in parameter es-

timation, specially in the liver. This work proposes a methodology for the non-rigid

registration of multiparametric abdominal diffusion weighted imaging by using differ-

ent well-known metrics under the groupwise paradigm. A three-stage validation of the

methodology is carried out in a computational diffusion phantom, a watery solution

phantom and a set of voluntary patients. Diffusion estimation accuracy has been di-

rectly calculated on the computational phantom and indirectly by means of a residual

analysis on the real data. On the other hand, effectiveness in distortion correction has

been measured on the phantom. Results have shown statistical significant improve-

ments compared to pairwise registration being able to cope with elastic deformations.

Introduction
◦ Apparent diffusion coefficient (ADC) is sensitive to displacement of water molecules, giving
evidences about cellular organization and cell permeability [1] in different tissues.
◦ Robust ADC estimation becomes non-trivial, as an exponential signal dropout is observed
when the magnetic diffusion gradient strength (the so-called b-values) increases.

Figure 1: Axial slices of DWI acquisition in a healthy volunteer with b-values of 0, 100 and
1000 s/mm2 (from left to right).

◦ Several confounding factors may greatly affect ADC estimation on the liver; artifacts are
very likely to appear during imaging due to respiratory and cardiac motion.
◦ Ultrafast sequences, i.e. echo planar imaging (EPI), suffer from geometric distortions as
well as local signal dropouts due to magnetic field inhomogeneities.
◦ Registration schemes of multiparametric (multiple b-values) acquisitions have proven to
alleviate the effects of these confounding factors.
◦ Groupwise approaches find optimal parameter set using a common reference built out of
the whole image space, so that template bias is not present.

Methods
Groupwise registration of different b-value images for robust ADC estimation on the liver.
Monoexponential decay model for the DWI images:

S(b) = S0e
−b·ADC (1)

where S represents the image for each b-value and S0, the image without diffusion gradient.

For the registration scheme, a gradient-descent/ascent procedure is performed for the opti-
mization. Non-rigid deformation model based on 2D B-spline [2] FFDs:

T(x) =
∑
j,k

BE(uj(x1))BE(uk(x2))θj,k (2)

Performance assessment of different multimodal metrics formulated under groupwise and
pairwise paradigms:

◦ Variance of the local entropy (VLE).
Local entropy [3] should be preserved along
the whole image set. Hence, the pixel-
wise metric can be considered as the sum of
squared differences of the local entropy im-
ages SN :

SN (I(N (x))) =
−1

|N |
∑
x′∈N

p(I(x′)) ln(p(I(x′))).

(3)
◦ Entropy of the distribution of intensi-
ties (EDI) [4]:

H(x) ' −1

N

N∑
n=1

log(p(In(Tn(x)))) (4)

with p(In(Tn(x))) a Parzen window estima-
tion of the pixel intensity distribution. This
metric favours those solutions in which pixel
intensities are well concentrated in the inten-
sity space.

◦Modality independent neighbourhood
descriptor (MIND): an image descriptor,
built from within-patch distances Dp and
variance estimates V :

MIND(I,x, r) ∝ exp

(
Dp(I,x,x + r)

V (I,x)

)
.

(5)
Afterwards, simple monomodal measures
built from MIND differences are used as pixel-
wise metric, as described in [5].
◦ Normalized cross-correlation (NCC):

H(x) =
1

N

N∑
n=1

< In(Tn(P(x))), µ((P(x)) >2

< In(Tn(P(x))) >< µ(P(x)) >

(6)
where µ(x) = 1

N

∑
In(Tn(x)) and I(P(x))

represents the operator over a predefined
patch P as defined in [6].

Results
Three-fold validation procedure:

• Synthetic experiment on 4D extended cardio-torso (XCAT) computational phantom [7].
Different apnea levels have been simulated and a synthetic deformation field is added
for EPI distortion simulation.

• MRI experiment consisting of a pre-design watery solution phantom in order to test
the ability of the methods for distortion correction.

• MRI acquisitions on a sample of four healthy volunteers. Axial SENSE DWI and T2
weighted Turbo Spin Echo sequences acquired on a Philips Achieva 3T scanner.

◦ Accuracy in motion compensation and distortion correction measured within the XCAT
phantom by means of error distributions on ADC estimation. U-tests have shown significant
differences between groupwise and pairwise approaches. EDI and MIND metrics exhibit best,
albeit similar performance, specially when compared to the original data (p < 10−9).
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Figure 2: Error on ADC estimation for proposed groupwise and pairwise metrics.

◦ Quantitative analysis, over the MRI phantom, of the overlapping (Dice coefficient) between
foregrounds from the registered DWI and the undistorted T2w sequences. No significant dif-
ferences were found in Dice coefficient distributions between groupwise metrics and its pair-
wise counterpart. However, Kruskal-Wallis test found significant differences within groupwise
metrics (p = 0.0027) and with the original data (p < 10−6).
◦ For the volunteer data, a goodness-of-fit analysis will measure the discrepancies between
registered data and the monoexponential diffusion model in Eq. 1. No differences were found
in RSS distributions.
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Figure 3: Dice Coefficient distributions for
foregrounds of DWI and T2w sequences.
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Figure 4: Residual sum of squares distribu-
tions obtained from ADC estimation.

Conclusions
◦ Non-rigid registration framework for motion compensation on multiparametric abdominal
DWI acquisitions. Groupwise approaches can deal with signal intensity changes and also
correct for geometrical distortions.
◦Metric choice is also an important issue for outlier removal. However, acquisition parameters
and estimation model have had greater impact than the alignment itself, regardless of the
metric.
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