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In a nutshell

Problem:
•The aggregation of non-stationary distributed
magnetic resonance imaging (MRI) samples
results in a systematic bias.

Solution:
•We analytically derive closed-form formulas to
compensate the bias from aggregated
non-stationary non-central chi (nc-χ) distributed
random variables (RVs).

•We reformulate the unbiased non-local means
(UNLM) scheme to handle non-stationary nc-χ
(Rician) distributed MRI data.

Non-stationary nc-χ noise

The composite magnitude signal M(j) in parallel ac-
celerated MRI can be modelled using a non-stationary
nc-χ distribution with the noise variance σ2(j) and the
number of receiver coils L(j).

Method Noise parameters

SENSE σ(j), L(j) = 1

GRAPPA+SMF σ(j), L(j) = 1

GRAPPA+SoS Leff(j), σeff(j)

Figure 1: Noise patterns for composite magnitude signal M(j) in
typical parallel accelerated MRI acquisitions.

Unbiased non-local means (UNLM)

The filtered image using UNLM can be obtained as:

UNLM(i)=
(

max
{∑
j∈V(i)

w(i, j)M 2(j)−2Lσ2(i), 0
})1/2

•V(i) – the search window,
•w(i, j) – the weight assigned to M(j).

The distance between the patches N (i) and N (j)

dist
(
N (i),N (j)

)
=
∥∥∥√GΣ

(
M(N (i))−M(N (j))

)∥∥∥2

2
with GΣ being a circularly symmetric Gaussian kernel.

Figure 2: The NLM scheme and the parameters σeff(j) and Leff(j).

Second-order bias correction

Let us assume that the filtering of MR data is done
using the sum of the weighted squared signals M(j)
with corresponding weights w(j)

S2 =
N∑
j=1

w(j)M 2(j), w(j) ≥ 0, (1)

where M(j) follows a nc-χ distribution.

If we assume the samples to be independent, the expec-
tation of (1) becomes:

E {S2} =
N∑
j=1

w(j)A2
L(j) + 2

N∑
j=1

w(j)L(j)σ2(j). (2)

This aggregation of non-identically distributed RVs
M 2(j) leads to a positive bias depending on the weights
w(j) and the parameters σ(j) and L(j).

Assuming Ã2
L =

∑N
j=1w(j)A2

L(j) and replacing the ex-
pectation operator by its weighted sample in eq. (2),
we reformulate the UNLM as follows:

ns-UNLM2(i) =
(

max
{ ∑

j∈V(i)

w(i, j)M 2(j)

− 2
∑
j∈V(i)

w(i, j)L(j)σ2(j)︸ ︷︷ ︸
correction factor

, 0
})1/2

.

New solution

For L(j) = 1 and σ(j) = σ, the ns-UNLM2 reduces to
the state-of-the-art UNLM for stationary Rician noise.

First-order bias correction

Alternatively, we now assume that the filtering is done
using a weighted averaging of the samples M(j)

S1 =
N∑
j=1

w(j)M(j), w(j) ≥ 0. (3)

Using the asymptotic expansion of the first raw mo-
ment of nc-χ distributed RV M(j), the expectation of
S1 turns into:

E {S1} =
N∑
j=1

w(j)AL(j)+1
2

N∑
j=1

w(j)(2L(j)− 1)σ2(j)
AL(j)

.

(4)

This bias incorporates underlying signals AL(j).

Assuming ÃL =
∑N

j=1w(j)AL(j), replacing the expec-
tation operator in eq. (4) by a sample estimator and
simplifying our considerations to AL(j) = ÃL we get
the closed-form solution:

ns-UNLM1(i) = 1
2

[ ∑
j∈V(i)

w(i, j)M(j)

+
(

max
{( ∑

j∈V(i)

w(i, j)M(j)
)2

− 2
∑
j∈V(i)

w(i, j) (2L(j)− 1)σ2(j)︸ ︷︷ ︸
correction factor

, 0
})1/2]

.

New solution

For high SNRs, the expression for ns-UNLM1 reduces
to the state-of-the-art NLM approach.

Experimental results

T1-weighted MR data
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Figure 3: (a) Reference, (b) noisy and (c) noise pattern.
Denoised: (d) NLM, (e) UNLM L(j) = 8, (f) UNLM L(j) = 2,
(g) UNLM L(j) = 1, (h) ns-UNLM2, (i) ns-UNLM1.

Third row: absolute errors of the methods. Fourth row: absolute
differences between (j, k) NLM and ns-UNLM2, ns-UNLM1
and (l, m) UNLM L(j) = 1 and ns-UNLM2, ns-UNLM1.
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Figure 4: (a) Reduction in MSE [in %] and (b) MSSIM measure
of the methods in terms of underlying noise variance σ2

l .

Diffusion-weighted MR data

Figure 5: (a, c) Reference, (b, d) noisy and (e) FA map.
FA obtained from denoised data: (f) NLM, (g) UNLM L(j) = 2,
(h) UNLM L(j) = 1, (i) ns-UNLM2 and (j) ns-UNLM1.

T1-weighted MR data
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Figure 6: (a) Noisy, (b) p-UNLM2 and (c) noise pattern.

Denoised: (d) NLM, (e) UNLM L(j) = 8, (f) UNLM L(j) = 3,
(g) UNLM L(j) = 2, (h) ns-UNLM2 and (i) ns-UNLM1.
Third row: absolute errors regarding (b).

The pseudoreference method p-UNLM2 is calculated across
K = 100 replicas.
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