

Universidad de Valladolid

Bias correction for non-stationary noise filtering in MRI

Tomasz Pieciak^{1, 2}, Iñaki Rabanillo-Viloria², Santiago Aja-Fernández²

LPI, ETSI Telecomunicación, Universidad de Valladolid, Spain $^{-2}$ AGH University of Science and Technology, Kraków, Poland

In a nutshell

Problem:

• The aggregation of non-stationary distributed magnetic resonance imaging (MRI) samples results in a systematic bias.

Solution:

• We analytically derive closed-form formulas to compensate the bias from aggregated non-stationary non-central chi (nc- χ) distributed

Second-order bias correction

First-order bias correction

Let us assume that the filtering of MR data is done using the sum of the weighted squared signals M(j)with corresponding weights w(j)

$$S_2 = \sum_{j=1}^{N} w(j) M^2(j), \quad w(j) \ge 0, \tag{1}$$

where M(j) follows a nc- χ distribution.

If we assume the samples to be independent, the expectation of (1) becomes:

Alternatively, we now assume that the filtering is done using a weighted averaging of the samples M(j)

$$S_1 = \sum_{j=1}^{N} w(j) M(j), \quad w(j) \ge 0.$$
 (3)

Using the asymptotic expansion of the first raw moment of nc- χ distributed RV M(j), the expectation of S_1 turns into:

$$\mathbb{E}\left\{S_{1}\right\} = \sum_{j=1}^{N} w(j)A_{L}(j) + \frac{1}{2}\sum_{j=1}^{N} w(j)\frac{(2L(j)-1)\sigma^{2}(j)}{A_{L}(j)}.$$
(4)

random variables (RVs).

• We reformulate the unbiased non-local means (UNLM) scheme to handle non-stationary nc- χ (Rician) distributed MRI data.

Non-stationary nc- χ noise

The composite magnitude signal M(j) in parallel accelerated MRI can be modelled using a non-stationary nc- χ distribution with the noise variance $\sigma^2(j)$ and the number of receiver coils L(j).

Method	Noise parameters
SENSE	$\sigma(j), L(j) = 1$
GRAPPA+SMF	$\sigma(j), L(j) = 1$
GRAPPA+SoS	$L_{ ext{eff}}(j), \sigma_{ ext{eff}}(j)$

$$\mathbb{E}\left\{S_{2}\right\} = \sum_{j=1}^{N} w(j)A_{L}^{2}(j) + 2\sum_{j=1}^{N} w(j)L(j)\sigma^{2}(j). \quad (2)$$

This aggregation of non-identically distributed RVs $M^2(j)$ leads to a positive bias depending on the weights w(j) and the parameters $\sigma(j)$ and L(j).

Assuming $\widetilde{A}_L^2 = \sum_{j=1}^N w(j) A_L^2(j)$ and replacing the expectation operator by its weighted sample in eq. (2), we reformulate the UNLM as follows:

For L(j) = 1 and $\sigma(j) = \sigma$, the ns-UNLM₂ reduces to the state-of-the-art UNLM for stationary Rician noise.

This bias incorporates underlying signals $A_L(j)$.

Assuming $\widetilde{A}_L = \sum_{i=1}^N w(i) A_L(j)$, replacing the expectation operator in eq. (4) by a sample estimator and simplifying our considerations to $A_L(j) = A_L$ we get the closed-form solution:

For high SNRs, the expression for $ns-UNLM_1$ reduces to the state-of-the-art NLM approach.

Figure 1: Noise patterns for composite magnitude signal M(j) in typical parallel accelerated MRI acquisitions.

Unbiased non-local means (UNLM)

The filtered image using UNLM can be obtained as: UNLM(i) = $\left(\max\left\{ \sum_{i \in \mathcal{W}(i)} w(i, j) M^2(j) - 2L\sigma^2(i), 0 \right\} \right)^{1/2}$

• $\mathcal{V}(i)$ – the search window,

• w(i, j) - the weight assigned to M(j).

The distance between the patches $\mathcal{N}(i)$ and $\mathcal{N}(j)$

Experimental results

T_1 -weighted MR data

Figure 3: (a) Reference, (b) noisy and (c) noise pattern. Denoised: (d) NLM, (e) UNLM L(j) = 8, (f) UNLM L(j) = 2, (g) UNLM L(j) = 1, (h) ns-UNLM₂, (i) ns-UNLM₁.

Third row: absolute errors of the methods. Fourth row: absolute

Diffusion-weighted MR data

Figure 5: (a, c) Reference, (b, d) noisy and (e) FA map. FA obtained from denoised data: (f) NLM, (g) UNLM L(j) = 2, (h) UNLM L(j) = 1, (i) ns-UNLM₂ and (j) ns-UNLM₁.

 T_1 -weighted MR data

112 dist $(\mathcal{N}(i), \mathcal{N}(j)) = \left\| \sqrt{\mathcal{G}_{\Sigma}} (M(\mathcal{N}(i)) - M(\mathcal{N}(j))) \right\|_{2}^{2}$ with \mathcal{G}_{Σ} being a circularly symmetric Gaussian kernel.

Figure 2: The NLM scheme and the parameters $\sigma_{\text{eff}}(j)$ and $L_{\text{eff}}(j)$.

differences between (j, k) NLM and ns-UNLM₂, ns-UNLM₁ and (I, m) UNLM L(j) = 1 and ns-UNLM₂, ns-UNLM₁.

Figure 4: (a) Reduction in MSE [in %] and (b) MSSIM measure of the methods in terms of underlying noise variance σ_I^2 .

Denoised: (d) NLM, (e) UNLM L(j) = 8, (f) UNLM L(j) = 3, (g) UNLM L(j) = 2, (h) ns-UNLM₂ and (i) ns-UNLM₁. Third row: absolute errors regarding (b).

The pseudoreference method p-UNLM₂ is calculated across K = 100 replicas.