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In a nutshell

Problem:

« The aggregation of non-stationary distributed
magnetic resonance imaging (MRI) samples
results in a systematic bias.

Solution:

« We analytically derive closed-form formulas to
compensate the bias from aggregated
non-stationary non-central chi (nc-y) distributed
random variables (RVs).

= We reformulate the unbiased non-local means

(UNLM) scheme to handle non-stationary nc-y
(Rician) distributed MRI data.

Non-stationary nc-y noise

The composite magnitude signal M (7) in parallel ac-
celerated MRI can be modelled using a non-stationary
nc-y distribution with the noise variance o(j) and the
number of receiver coils L(j).
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Figure 1: Noise patterns for composite magnitude signal M () in
typical parallel accelerated MRI acquisitions.

Unbiased non-local means (UNLM)

The filtered image using UNLM can be obtained as:

UNLME)= (max { > w(i, j)M*(j)—2Lo*(i), o}) "

JEV(i)
= V(1) — the search window,

w(i, j) — the weight assigned to M(j).

The distance between the patches N ( ) and N (7)
dist (M), N () = || VIm(MW(G) = M)
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with s bemg a Clrcularly symmetric Gaussian kernel.
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Second-order bias correction

Let us assume that the filtering of MR data is done
using the sum of the weighted squared signals M (7)
with corresponding weights w/()

S5y = Zw(j)MQ(J'),

where M (j) follows a nc-y distribution.

w(j) =0, (1)

If we assume the samples to be independent, the expec-
tation of (1) becomes

T {S,)} = Z w(j)A%(j

+22w 2(4). (2)

This aggregation of non-identically distributed RVs
M?(7) leads to a positive bias depending on the weights
w(y) and the parameters o(j) and L(j).

Assuming A2 = Z;\le w(j)A%(7) and replacing the ex-
pectation operator by its weighted sample in eq. (2),
we reformulate the UNLM as follows:

ns-UNLMy(7) = (max{ Z w(i, §)M*(j

correction factor

For L(y) =1 and o(j) = o, the ns-UNLM, reduces to
the state-of-the-art UNLM for stationary Rician noise.
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First-order bias correction

Alternatively, we now assume that the filtering is done
using a weighted averaging of the samples M (7)

S, = Zw(j)M

Using the asymptotic expansion of the first raw mo-
ment of nc-y distributed RV M (7), the expectation of
S turns into:

{81} = YD w(i)Asli)+

w(j) = 0. (3)

J=1

This bias incorporates underlying signals Ay(7).

Assuming A; = Z;\f:l w(7)Ar(7), replacing the expec-
tation operator in eq. (4) by a sample estimator and
simplifying our considerations to Ar(j) = Ap we get
the closed-form solution:

1

ns-UNLM, (i) =

correction factor

For high SNRs, the expression for ns-UNLM; reduces
to the state-of-the-art NLM approach.

Experimental results

T1-weighted MR data

Figure 3: (a) Reference, (b) noisy and (c) noise pattern.
Denoised: (d) NLM, (e) UNLM L(j) =8, (f) UNLM L(j) = 2,
(g) UNLM L() = 1, (h) ns-UNLMs, (i) ns-UNLM,.

Third row: absolute errors of the methods. Fourth row: absolute

differences between (j, k) NLM and ns-UNLM,, ns-UNLM;
and (I, m) UNLM L(j) =1 and ns-UNLM,, ns-UNLM;.
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Figure 4: (a) Reduction in MSE [in %] and (b) MSSIM measure

of the methods in terms of underlying noise variance o7.

Diffusion-weighted MR data

(9)
Flgure 5 ) Reference, b d ) noisy and ) FA map.
FA obtalned from denoised data (f) NLM, ( ) UNLM L(j) = 2,
(h) UNLM L(j) =1, (i) nssUNLM; and (j) ns-UNLM;.
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Figure 6: (a) Noisy, (b) p-UNLM, and

noise pattern

Denoised: (d) NLM, (e) UNLM L(j) =8, (f) UNLM L(j) = 3,
(g) UNLM L(j) = 2, (h) ns-UNLMs and (i) ns-UNLM;.

Third row: absolute errors regarding (b).

The pseudoreference method p-UNLM, is calculated across
K =100 replicas.



