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Themathematical principles of computed tomography
(CT) were first investigated by J. Radon [28] as early
as 1917 and were later extended to complex fields by

Kirillov [22]. The first application of tomography was, sur-
prisingly, in radio astronomy [2], and today, it finds usage in
diverse fields such as medical imaging, seismology, and un-
derwater acoustic imaging. In medical imaging, CT has had a

tremendous impact in noninvasive diagnostics, surgical plan-
ning, etc., as a diagnostic tool. Newer scanning techniques
such as the spiral CT are being used that have extended the
traditional CT technology. There is vigorous ongoing re-
search in cone-beam CT, in which the mathematical princi-
ples are being understood arid extended for practical scanner
implementations. In this article we will exclusively deal with
nondiffractive-transmission CT.

Tomography literally means "slice" or cross-sectional im-
aging. The central idea is to reconstruct an object from planar
integrals of the data. In an n-dimensional world, the object is
reconstructed from data obtained by integration along
hyper-planes intersecting it. In 2-D, the hyper-plane integrals
degenerate to line integrals. In this article, we shall limit our
discussion to 2-D and 3-D objects. A 3-D object can be exam-
ined in two ways.
o The object can be visualized as a stack of 2-D slices.
• The object is examined in its natural 3-D representation.

Various scanning geometries have evolved in 2-D CT.
The original CT theory was developed for parallel beam geo-
metries. In the second-generation scanners, fan-beam geo-
metries were used. In this generation of scanners, the
detectors were placed on an arc of a circle or a straight line,
and the source-detector assembly rotated around the object.
In the third-generation scanners, the detectors were placed on
a complete circular ring and the x-ray source rotated around
the object. The fourth and the current generation of scanners
use the spiral or helical CT technology.

Practical 3-D scanners are yet to be built. Various prototypes
such as Mayo Clinic's Dynamic Spatial Reconstructor (DSR)
and Imatron Inc.'s Electron Beam CT have been developed and
show promise, but they are not true 3-D scanners.

In this article we will examine the physical and mathe-
matical concepts of the Radon transform, and the basic paral-
lel beam reconstruction algorithms are discussed. We also
develop the algorithms for fan-beam CT, and we briefly dis-
cuss the mathematical principles of cone-beam CT.

1. (a)A 3-D object within a sphere of radius R. One octant of the
sphere is depicted. (b) The same object is shown as a stack of
slices along the z direction. f(x,y) = w(x,y,zk) is one such slice at z
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The 2-D Radon Transform

Let us consider a real 3-D space, Every point x canbe
represented by the Cartesian triplet (x,y,z). Let w(x) denote
the object with a sphere of support in of radius R. The ob-
ject w has a value in the finite range [a,b] and is usually non-
negative, i.e., a � 0. By fixing the third dimension, z, to a par-
ticular value, we obtain a 2-D sliceftx,y) of w(x,y,z) (Figure
1(b)). For different values of z, we obtain different slices. If
these slices are stacked up and properly aligned, then we get a
reasonable 3-D stack representation of the object. Ideally,
each slice has infinitesimal thickness, but in practical scan-
ners, the thickness is measurable and can be adjusted between
a range. If the value of the object in between two slices is
needed, then suitable interpolation techniques can be em-
ployed by using the neighboring slices [38] (see Figure 1).

Now, let us consider a slice,ftx,y) =W(X,Y,Zk), where Zk is
fixed. We note that this slice is bounded by a circle of radius R
(see Figure 2). The x and y coordinates identify the spatial
2-•D axes of the slice. Let us also consider a parallel beam of
rays intersecting the object. The parallel beam is inclined to
the x-axis at an angle e and each ray, M, can be characterized
by its perpendicular distance, t, to the origin. A line integra-
tion is performed along each ray, M9, and is denoted by:

Pe(t)=f M f(x,y)ds. (1)

where s is along the direction of the ray. P9(t) is called the Ra-
don transform offtx,y). For each fixed 9, P0(t) is a 1-D signal,

and hence {P0 (t)I 9€[O,it) } gives a complete collection of 1-D
projections of the 2-D objectfix,y). We only need 0 to be in
the interval [O,m), since any interval bigger than this will im-
ply duplication of information. It is easy to see that Pe(t) is
zero outside the interval [—R,R] and the parametric represen-

tation of M8, is x cosO + y sine = t. Using the Dirac delta
function, we have an alternate representation:

P8(t)=ff a2 f(x,y)6(xcos0+ysinO—t)dxdy, (2)

Our objective is to reconstruct the sliceflx,y) from P8(t). P9(t)
is usually measured by a detector array.

Physics of CT

We have implicitly assumed that, in X-ray tomography, we
have the projection data available to us. How are we measur-
ing this projection data? In X-ray CT used for diagnostic im-
aging, the energy of the X-rays is approximately 120 keY.
Any X-ray passing through an object is subject to attenuation
either due to photo-electric absorption in the object or due to
Compton scatter. If an X-ray beam of a certain energy (and
hence wavelength) has a certain intensity measured in terms
of the number of photons, N,, exiting the source, the number
of photons registered at the detector, Nd, will be lesser, due to
absorption and scattering. Let us consider a homogeneous
object through which the X-rays are passing. In this case, the

combined attenuation factor per unit distance in this material
has the relationship:

N, —Nd _
N

(3)

where j.i is the attenuation factor per unit distance. Solving
this differential equation yields us the solution:

y

x

x

2. (a) A slice, f(x,y), within a circular support of radius R. (b) A

parallel-beam projection through f(x,y) at an angle 8from the x
axis. Me(t) represents a ray passing through f(x,y) at a distance
from the origin at an angle 0. Pe(t) is the measured projection
data.
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HE(J) Alternatively,

I

3. H(l): Note the discontinuities at 1 = a. The total area under
H€(l) is zero. The discrete versions of this filter are the Ram-Lak,
Horn, and Shepp -Logan kernels.

4. H8(l): The projections at 8j, 92, 93, 94, etc., are filtered to ob-
tain Qei (I), Qe2(l), Qe3(l), Q94(l), etc. These filtered projections
are then smeared (back-projected) onto the image plane.

N(l) = N5e. (4)

In reality, p. is not constant since the object is not com-
posed of a homogeneous material and the position depend-

ency is denoted by p.(x,y). The exponent is now replaced by a
line integral and the measured number of photons, N4, is
given by:

N4 = Ne (x,y)ds

$ Prh(X, y)ds = in

and the quantity on the left hand side represents the pro) ection
data e(l). We are assuming here that the X-rays are mono-
chromatic (or at least the detectors have a very sharp notch
filter response to polychrornatic X-rays——the detectors are
insensitive to scattered polychromatic X-rays). In practical
X-ray sources, this is not true. The detector equation is then
modified as:

Nd =$N (E)e

where Nd is the total number of X-ray photons of all energies
registered at the detector, while N(E) is the number of X-ray
photons of energy, E, exiting the source, and Lt (x,y,E) is the
attenuation factor at location (x,y) for energy E. What is the
nature of p. (x,y,E) with respect to E in diagnostic imaging?
For most tissues, p. decreases with increase in X-ray energy.
This means that low energy X-rays are absorbed more, while
high-energy X-rays are passed through, implying that X-ray
spectrum of the photons at the detector show a skew in favor
of high-energy photons. This is termed as beam hardening.
This effect is more noticeable in CT scans of the skull and the
artifacts are termed as beam hardening artifacts. In regions
near the bones, this effect produces a slight elevation of the
measured p. [20] and results in streaks in the reconstruction,

Inverting the Radon Transform

In this section we will examine the methods available to us
for reconstructing a slice, f(x,y), from its projection data,
P8(t). The two basic algorithms for parallel beam geometry
are filtered back-projection and the Fourier slice method. All
the 2-D reconstruction algorithms for various geometries rely
on the principles of these two methods.

Filtered Back-Pro]ection

In two dimensions, it is easy to show [28, 7. 31] that the in-
verse Radon transform is reduced to:

1 dlde, (8)
2m ° (xe—l) hi
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The perpendicular distance of the ray, Mie,from the point
f(x,y)=l— t= 1— x 0, where® = (cos 9,sin e) and x = (x,y).
There is a singularity at x 0 = 1 in the inner integral. Using
the principal value [31], and assuming that bP(t)/bt exists
and is continuous, it is easy to show that:

(5) f(x,y)=J: (l)HE(x0-l)dldB, (9)



1—- forl<€ (10)H (l)=. for lJ�€

The graph of H(l) is shown in Figure 3 for a finite nonzero
value of €.The inner integral in Equation 9 is a convolution. It
can be easily shown that the frequency response of H(l) is ap-

proximated by wi, i.e., H(l) acts as a high-pass filter. The
outer integral in Equation 9 has the effect of smearing the fil-
tered projection data. If we represent Q0 (1) = P8(l) * H(l),
then, for every 0, we smear Q0(l) on to the image plane (x,y) to

obtainftx,y) (see Figure 4). The process of smearing is called
back-projection, and hence, this method of reconstruction is
called filtered back-projection. We also infer from the above
equation that if P8(l) is known over the domain [—R,R] ><
[0,ir), we can reconstruct f(x,y) completely. In addition, the
following points are evident:
• The contribution of each projection, P0(l), to the recon-

struction at (x,y) depends on its perpendicular distance, 1, to

the reconstruction point. Except for rays passing very close
(within E distance) to (x,y), the contribution of the rays var-
ies as the negative inverse of the square of their distances
from (x,y).

• The weights of the contributions of rays close to (x,y) is
such that the sum of all weights is zero, JxH€(l)dl 0.

• While P0(l) has compact support, i.e., P8(l) E [—R,R], the
same is not true for Q6(l), since H(l) has infinite extent.
However, this problem is mitigated by the fact that H(l)
decays very rapidly (x2 decay).

• The wi filter poses some problems as it is not a square inte-
grable function. In practice, H(l) is bandlimited and
smoothed by appropriate smoothing filters to take care of
Gibbsian artifacts [201.

Discrete Implementation of Filtered Back-projection
In practice, we can gather only a finite number of projections.
If the projection angles are evenly spaced in [0,ir) and we
have N such projections. We may approximate the back-
projection equation by

(11)
2ir 1=0

where Q1(l) is the ith filtered projection out of the [0, N — 1]
anLd öO = it/N.

Also, we have only a finite number of detectors. We will
assume, for the moment, that the width of the detectors is neg-
ligibly small and spaced apart by a small distance, T. We now
sample the projection data with sampling distance T. Let us
represent the sampled version of P9(l) as p(k) and Q0(t) as
q.(k). To obtain the discretely convolved q,(k) from p(k), we
also have to sample HE(t). If H(k) is the sampled version,
then:

H(k)=—
(kT)

H(0)=-2H(k) (13)

H(O) is so chosen to satisfy the condition HE(t) dt =0.
How do we chose w? One set of Wk can be obtained as fol-
lows. We know that the Fourier transform of H(r) is Io. and
if we have to sample H(t). then we have to bandlimit Io to
avoid aliasing. We choose a filter. S(w) = kolbjw), where:

b
(14)

O otherwise

b(w) is a rectangular window imposed on top of the kol filter.
It is easy to show that the impulse response of Jf(o) is given
by:

(15)

This impulse response is very widely used and is com-
monly referred as the Ram-Lak kernel, after Ramachandran
and Lakshminarayanan [29]. Two other kernels commonly
used are the Shepp-Logan kernel:

Wk= 4k2/(4k2—l) (16)

and the Horn kernel [16]:

Wkl. (17)

The Horn kernel is obtained by considering the trapezoi-
dal rule for numerical integration, while the Shepp-Logan
kernel is obtained by considering a numerical integration for-
mula, which accounts for the singularity in the inverse Radon

transform. From a signal processing perspective, choosing

5. This picture depicts the relationship between the ]-D Fourier

transform Se(w) of Pe(t) and the 2-D Fourier transform of F(u,v)
of f(x,y). w and 0 completely describe each point (u,v) in the Fou-

rier plane. i.e., (u,v) = (0 cos e, wsin ).
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the Horn or Shepp-Logan kernel is equivalent to using a
smoothing window on the kol filter. In practice, the Ram-Lak
kernel is used with Hamming and other smoothing windows.

Some Implementation Issues
• The projection data is not truly bandlirnited and hence

there is going to be some amount of aliasing because of
sampling. One way to minimize the aliasing is to select a
sampling interval so that a major portion of the energy
spectrum of the projections is obtained unaliased. Assum-
ing that the actual tail of the spectrum of the projection data
tapers towards zero rapidly, it may not be a bad idea to
specify that the sampling frequency accommodate all fre-
quencies that contribute to X% (say 99%) of the energy.
But this is subject to detector size limitations.

• The bandwidth of the windowed 1Q1 filter must be chosen
so that it is much more than the bandwidth of the projection
data. This is not an easy task, and conflicts easily arise.
Choosing a much larger bandwidth for the filter implies
that the projection data must be finely sampled, to which
there are practical limits because of detector size limita-
tions.

• We have implicitly assumed that projections are sampled
using the Kronecker impulse train. However, detectors
have a finite rectangular spatial aperture and the resulting
effect is the implicit low-pass filtering of the projection
data before sampling. These effects should be carefully
considered while choosing a smoothing window for the o
filter (see sidebar).

• The Ram-Lak filter [16] is perhaps the best filter in terms of
fine spatial frequency resolution, but it is sensitive to noise
and Gibbs artifacts because of the discontinuity in the fre-
quency domain. The Horn filter tends to blur edges while

6. Using the Fourier slice theorem, if we try to reconstruct the im-

age by estimating F(u,v) along radial lines Se(w), we observe
non-uniform sampling, with dense clusters of samples near the

origin and sparse samples away from the origin. This leads to
gross interpolation errors in the higher frequencies.

suppressing noise. The Shepp-Logan filter lies in between
in performance. In practice, the use of various smoothing
windows tends to blur edges, and to obtain a compromise,
one uses various linear combinations of these smoothing
windows to suit different applications. This is evident in
the various filters that an operator can choose during recon-
struction in practical scanners.

• We have assumed that the projection data have a continu-
ous derivative dP5(t)/dt. If there are regions that violate
these assumptions (which are absolutely required for in-
verse Radon transforms), then these regions will contribute
to overshoot and other Gibbs-like artifacts [33].

• During back-projection (see Figure 7), for a given angle e,
the contribution to the pixel (i,j) lies between the filtered
samples q1(k) and q(k + 1). Some sort of interpolation has
to be performed. Various interpolation techniques, such as
zero-order, linear, spline, and Lagrange methods may be
used. The choice will depend upon a priori knowledge of
the nature off(x,-v), the amount of computation that can be
practically used for the given application, and the visual
quality that can be achieved for a particular interpolation
method. Linear interpolation is very popular, while cubic
spline and other sophisticated curve fitting methods are
very good at isolating sub-pixel edges. Other signal proc-
essing techniques such as subsampling, super-sampling
and pre-interpolation (by zero-padding in the frequency
domain) [20, 26, 6] methods may also be employed, and
these methods may have better computational efficiency
than traditional interpolation methods.

• Care should be exercised during the filtering of projection
data using FFT. Noting that the convolution in DFT do-
main is circular, while an aperiodic convolution is actually
needed, the projection data should be sufficiently zero-
p added to remove interperiod artifacts [26].

Direct Fourier Transform Method

Oneof the important properties of the Radon transform, P0(t),
of an object,fix,y), is its relationship to the Fourier transform,
fF(u,v) off(x,y), usually termed as the "Fourier Slice Theo-
rem." Recalling that:

(u,v)=ff2 f(x,y)e''dx dy

and defining the Fourier transform S8(w) of P0(l) as

S0(co)= I P0(l)edl

let us examine 7F(u,0):

(u,0) =J [$ f(x, y)dyIedx

(18)

(19)

(20)

The inner integral is P9 =0(x) and the outer integral calcu-
lates its Fourier transform S9_0(co), i.e., F(u,0) =S9=0(0). By
considering a system of coordinates (t,s) [20] rotated by an
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Rebinning

In fan-beam reconstruction, ftx,y) was reconstructed
directly from the back-projection of the filtered fan-
beam data. Another way to accomplish the reconstruc-
tion is to re-sort the fan-beam data into equivalent
parallel-beam data, and use the standard parallel beam
filtered hack-projection algorithm. From our previous
discussion, we have, for an equiangular fan-beam ge-
ometry, 9 = 13 + y and t = I) siny. Then, for every fan-
beam ray R(y, we have the corresponding parallel-
beam measurement P{13 + 'y}(D sin'y). Ef 13 and y are

sampled uniformly, i.e., 13 =m13 andy= n&y, we have
the sampled version R,(ny) =P, + iAy('s iny. We
note that P is nonuniforinly sampled in both dimen-
sions, land 9. We have to resort 10 interpolation to get a
uniformly sampled (1,9) domain. We can alleviate the

interpolation effort by constraining j3 =7= X. Given
the geometries of the detector array and the X-ray
source, this is not an unreasonable constraint. We then
have R,na(na) = P(,,..)a(Dsinna). We now have a faster
re-sorting (rebinning) algorithm, where nth ray in the
mth fan beam maps to a ray in the (m+n)th parallel pro-
jection.

In the above strategy, it is quite possible that some
projections will have more samples and some will have
less. However, by using suitable interpolation, it is pos-
sible to recover the required number of uniform sam-
ples in the parallel projection domain. This rebinning
method is sensitive to interpolation errors. We note
that, in the case of cone-beam CT, the calculation

G(f3,CD) = F(13, b 13) implies a similar rehinning strat-
egy accomplished through interpolation.

lated onto a rectangular grid. The interpolation errors will
not be constant. Toward the origin, there will be a dense
collection of samples and interpolation errors will be
small. In the high-frequency regions, the samples are
sparse and interpolation errors will be high. Consequently,
edges and other high-frequency spatial content in the sig-
nalf(x,y) will be distorted.

• The choice of an interpolation rule is not clear since this has
to be done in the frequency domain. Surface fitting meth-
ods [17, 39] are probably the best method, but these meth-
ods tend to be computationally very expensive.

• As noted earlier, the Fourier transform of the projections
may not be bandlimited. To prevent aliasing effects, we
will have to either bandlimit the projection Fourier trans-
forms prior to interpolation in the T(u,v) domain or
bandlimit 9{u,v) after interpolation.

Fan-Beam CT
angle 9 from the (x,y) coordinates, we can generalize the
above relation to show that:

S(w) f(oi cos 0, w sin 0). (21)

From Figure 5 and the equation above, we infer that if we
calculate the Fourier transform of P0(l), for all 9, then it yields
the Fourier transform fF(u,v) off(x,y) (see Figure 6). We can
then easily obtain f(x,y) by taking the inverse Fourier trans-
form of T(u,v).

Issues in the Direct Fourier Transform Method
The Fourier slice theorem, at first glance, looks attractive for
tomographic reconstruction. However, we must note the fol-
lowing points about Fourier slice reconstruction.
• The Fourier transform S0(w) of P0(t) gives us the values of

the Fourier transform 5(u, v) off(x,y) along a radial path at
angle 0 in the (u,v) domain (see Figures 6 and 8). For
equiangular 0, we obtain values of F(u, v) along radial paths
in concentric circles. These values have to be then interpo-

In parallel-beam geometry, for each angle, 8, the source (and
the detector) must have a translation motion (to cover the t di-
mension). It is very cumbersome to develop such X-ray
source-detector systems. In addition, very large scanning
times and undue exposure to ionizing radiation for extended
periods are involved. Fan-beam tomography alleviates some
of these problems. In this set-up, the X-ray beam is colli-
mated so that a thin, planar fan beam of rays extends from the
X-ray source and passes through the object before being col-
lected by a detector array. The X-ray source then rotates
around the object. (Or, in an equivalent motion, the object ro-
tates about an axis perpendicular to the fan beam, as is nor-
mally done in industrial CT scanners). In each source
position, the fan beam completely covers the object (see Fig-
ure 9). There are two major detector configurations (Figure
10):
• Equiangular fan beam—the detector array lies on a circular

arc (or a complete circle as in present-day scanners) such
that the angle subtended between two detectors is constant.
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7. Back-projection. The back-projected value at a specified loca'
tion (i & jAy) can be obtained by interpolation. The easiest
method is to linearly interpolate between two neighboring values.



Sinograms

What are sinograms? If we consider the Radon space
and restrict it to the extent of the object [—R,R] x [0,ic),
it completely covers a circle in the (1,0) domain. If the
same domain is represented in Cartesian coordinates,
as shown in figure 13, it covers a rectangular region.
This kind of pictorial representation is called a sino-
gram. Why is-it called a sinograrn? Consider the Radon

transform equation (Equation 2). IfJ(x,y) corresponds
to a delta function (x —x,y— y0), then it is easy to see
that the corresponding representation in the sinogram
will be a sinusoidal function.

Sinograms are very useful in visualizing the projec-
tion data P9(l) and the corresponding data mapping in
fan-beam geometries. Figure 13 also shows the extent
of overlap in the case of data collection from limited-

angle fan-beam projection (the angle of coverage for 3
being 1800 + 2). For the case of I E IZ0,it), the sino-
gram shows that there are regions (marked A) where
data has been measured twice and regions (marked B)
where there is no measurement at all. To get complete
coverage at least once, we must increase the scanning

angle for to at least 1800 +2g,. This, however, in-
creases the overlapped regions (A). To compensate for
the overlapped data, a suitably smoothed one-zero win-
dowing filter is applied to the fan-beam data before re-
construction.

Equidistant collinear detector fin beam—the detectors lie
on a straight line and are equidistant from each other.
In order to understand the reconstruction algorithms for

these two configurations, let us first examine a ray-sampling
configuration in generalized coordinates.

Generalized Sampling Coordinates

In the previous sections, we based our reconstruction on the
fact that our uniform sampling coordinate system is (t, 0).
However, this may not be a suitable coordinate system for
data acquisition. Let us assume that we have uniform sam-

pling in our acquisition coordinate system, (,fl). We may
now write our reconstruction formula in these coordinates as
follows 161:

/(,._LJifl55/f(()P(/l/(IO)/J/n(22)

land tare dependent on rand . Appropriate limits ofintegra-
tion are used for (, ) space. Jis the Jacobian of the transfor-

mation from (, fl ) space to (/,0) space and is given by: as:

Uniform sampling in (, fl) space usually does not trans-
late to uniform sampling in(l,e) space. and intuitively, we see
that the sampling density in the latter space is inversely pro-
portional to]. In the equation above, we may represent the in-
ner integral as:

g(r,,fl)=iim5H (l-t)P(,nV (24)

and the equivalent back-projection equation can be written
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R(y)

/0. (a) Lquiaiigulw/aii-heaiii. 7'/,e detectors lie on an aic / a
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i/ic detectors are co/linear itO/i III)! feint .win/hi ii,' (/LsIaiice d.

(25)

In general. (I — I) is a function of r. L , and i. However.
for fan—beam geometries. (1 —— I) will lead to separable func-
tions and the evaluation of ç becomes more tractable.

Reconstruction from Equiangular
Fan-Beam Projections

In this conf iguratl()n. the detectors are placed eithcron an arc
of a circle or on a complete circular ring and are equal K
spaced so that the angle subtended between two detectors

the source is constant (say a) (see Figure I I ). If the detectors
are on an arc of a circle, then the source and the detector a—

Detector/Collimator Aperture Effects

In the filtered back-projection algorithm, we have as-
sumed that the detector width is negligible and sam-
pling is done essentially by a Kronecker delta train. In
reality, the combined geometry of the collimators and
the detectors results in a finite aperture. Let us denote
the aperture function as:

Ii 1<r
a(1)H 2

O otherwise

(48)

where 7'4 is the width of the aperture. The Fourier trans-

form of this function is given by A(co) 'd sinc(coTj2).
The observed projection is essentially a convolution of

a(1) with P8(1t. A(o) is a low-pass filter. By imposing a
rectangular window in the frequency domain, we may
approximate the aperture function by:

A'(co)r {Tdsinc(0Td/2)
coI�0/p

0 otherwise
(49)

where co, is the low-pass filter bandwidth correspond-
ing to the first zero in the sine function, Now, let the
sampling interval be T. The Kronecker impulse train
can be represented as and its Fourier transform is given

by K(w) - :. (w — 2i). Hence, the sampled pro-
jection data pa/i) '[(S8 (o) A' (u))5K(w)]. It is
quite evident from the above that, to avoid aliasing ef-
fects, Tç � This implies that we have sample at least

twice within the one detector width—a rather nonintui-
tive finding! In parallel-beam CT configuration and
fourth-generation (fixed-detector fan beam) CT, this is
effectively accomplished by sampling the detectors
twice per source position.

For third-generation (rotating-detector fan-beam)
scanners, a technique called quarter-detector offset is
used. Recall that, for fan-beam reconstriction, we
really need the data through 180° + 2y angle only and
collecting it through 360° results in redundant meas-
urement. The detector array is usually symmetric with
respect to the line joining the X-ray source and the ori-
gin. However if the detector array is offset (translated
to the left or right of the origin) by 1/4th of the detector
spacing, then the rays in opposite views are unique. If
data is collected over 360°, it effectively doubles the
sampling frequency.

sernblies move together in a circular Ira ector aiounc! the ob-
ject. [his setup represents the second generation ol ("I' scan-
lid's, The third generation 01' (1' scanners has a clicLilar ring
ol detectors that are static and the X-rar source that moses
around the oHect along a circular trajectorr . 'Ihe ad\ images
with tlti setup ale:
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Noise in CT Reconstructions

The detector measurements, depending upon the type of
detector used, are directly or indirectly dependent on the
photon counting statistics that are inherently Poisson in
nature. For very large counts, we may safely assume that
the statistics are stationary and white. This is not strictly
true since the presence of a structure such as a bone in the
object significantly alters the counting statistics in regions
of the projection data where the rays travel through it, in
comparison with the projection of areas in the object
where the rays pass only through soft tissue. In addition to
these effects we also encounter shot noise in the detectors
and quantization noise while sampling the detector output.
For the sake of simplicity and a tractable noise model, we
will pursue with the white noise assumption. In the con-
tinuous domain, the noisy projection data P0(1) is mod-
eled by:

Pe(1)Po(l)+i1e(1) (50)

where ri9(l) models the additive white Gaussian noise [15,
30]. The autocorrelation of this process is given by:

(ll,12,91, 02) S0ö(lt— 12)6(OJ—02). (51)

The reconstructed objectj'(x,y) is obtained as:

f(x,y) =ftx,y) +J(x,y)

wheref(x,y) is the noisy reconstruction andf(x,y) is the
noise component in the reconstruction and is given by
f(x,y) = 1/2icJ09(1) *H(1) dO, where * denotes convolu-
tion. We would like to characterize the nature of the auto-
correlation of the noisy image as follows:

dO dO,

=

Here, H(l) = HE(1)
* 14(l)

1 (2 }; LH(o))

T{H(1)}; and LTis the Fourier transform operator. We also

have 12— 1 = (x2 — x1) cosO + (y2 — v1) sinO, and hence the
auto-correlation function is space invariant and can
really be written as d1.d2). This also implies that the re-
constructed noise image is stationary. Furthermore, ex-
pressing RJn polar notation as R(p,c) where d1 =p cos ii
and d2 = p sin j, we have:

=
$ S(o2 e12 0s(Jdd0 (54)

4it °

= (w)l2 y (2p)
Hence, iji) is only dependent on p (radially sym-

metric), the distance between two points (x1,y1) and (x2.y2).
Intuitively, this appears reasonable. The above equation is

(52) also a zero-order Hankel transform of l5w)I2 and 90(x)is
the zero-order Bessel function of the first kind. Taking the
1-D Fourier transform of which really gives us the

circularly symmetric noise spectrum of the R(d1 ,d2) along
any radial path, it is easy to show that this is proportional

to 9co)l2ko. This implies that, if a windowed version of
the Icol filter is used, then the noise-power spectrum is di-
rectly proportional to this filter! This also implies that the
noise has a lot of high-frequency content in it. A similar
analysis [15] for fan-beam projections will show that we
get the same results for the auto-correlation Jnction as
above.

• The heavy detector assembly with its lead collimators are
static. The X-ray source and collimator (which is a much
lighter assembly) is easier to niove, improving scan times
per slice.

• Circular ring artifacts were common in the older version.
This was due to a poorly calibrated or malfunctioning de-
tector in the detector array that generates a consistent data
error at a particular location in P0(1) for all 0 120]. The re-
sulting reconstruction generates a spurious circular ring ar-
tifact. In the third-generation CT, such data dropouts now
happen at different locations in the fan beam in only some

of the projections. These dropouts will not generate the
structured ring artifacts.
Considering the fan-beam geometry from Figure 11. the

source subtends an angle with the y-axis. The fan beam
has a maximum angle of 2y,, and each ray in the beam sub-
tends an angle y with the source-origin line. We now have
the relations 0 = + y and I = D siny. where D is the distance
from the source to the origin. The uniform sampling coordi-
nate system is now (, y) and the Jacobian I evaluates to D
cos-y. In polar coordinates, the reconstruction off can now be
written as:
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S ir
—
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where y, sin '(t/D). Letus denote P + y(D siny) as R(y).
Let L be the distance of the source from (xv) (or (r,) in polar
coordinates). The ray passing through this point subtends an
angle y'. From Figure 11, it is easy to show that:

L cos 'f' = D + r sin (f3 —

Lsin'y'= rcos(f3—)

Using these relationships, we have

f(r,p)= —urn42 €*o

J JR (y)H(Lsin(y'—y))Dcosydydl3

(27)

The above equation looks very close to a convolution, but

is really not so, since 1-4 is not directly related toy. By consid-

ering H as a Icol filter and using to' = toL sin'y/y, we can easily
show:

1
urn42

(26)

2i 5m

L

H(Lsiny)=1 H(y)
Ls1ny)

(28)

Introducing a new variable, g(y) = ()2HE(y) we now

have the reconstruction equation as:

f() = l$2 ftfl R (y)g(y' - y)Dcosydyc1 (29)
4ir ° L -v"

The inner integral above is a convolution of weighted pro-

jection R(y) (with weighting factor D cosy) and the filter g(y)
which is again, a weighted version of the Io filter. The outer
integral is a weighted back-projection integral. The construc-
tion algorithm hence consists of three steps:

MARCH 1997 IEEE SIGNAL PROCESSING MAGAZINE 51

12. Equidistant detector fanbeam: The central ray makes an an-
gle. b, with the v axis. The ray hitting the detector array at a dis-
tance s = si from the central ray makes an angle, y. The sampling
is uniform along the collinear detector array.

(b)

11. (a) The source, S. makes an angle, J3, with they a.xis. Each in-

dividual ray subtends an angle, from the central ray. The mwci-

mum angular displacement 'fm (b)Back-projection after filtering.
C denotes the point (x,y) in the path of the back-projection ray
and it is at a distance, L, from the source, S.



Spiral CT

In conventional fan-beam CT, a series of slices are gathered
by having the patient (object) translate a few millimeters be-
tween two slice acquisitions. This is a very slow process. It
typically takes one second for one slice data acquisition and
tens of seconds to prepare for the next data capture. In many
ci nical tests (such as the thorax), the patient is required to
hold his breath during slice acquisition to minimize motion
artifacts. However, the degree of aspiration (breath hold) is
not uniform for all slices and hence there are going to be a lot
of artifacts during 3-D volume reconstruction. This standard
method also precludes the use of CT in angiographic applica-
tions.

The collimators placed for the source and detector array
theoretically provide for a rectangular profile in the z direc-
tion, and this rectangular profile (usually termed slice thick-
ness) is variable from 2mm to 10mm. In practice, the profile
is not rectangular due to geometrical unsharpness and X-ray
scatter. The slice thickness is usually defined to be the full
width at half maximum (FWFIM) or full width at one-tenth
maximum (FWTM) of the slice isocenter,

In spiral CT, there is continuous rotation of the source as-
sembly around the detector ring, which is accomplished us-
ing slip-ring technology. Simultaneously, there is a constant
translatory motion of the gantry in the z coordinate (x and y
being defined in the plane of the slice) (see Figure 16). In this
method, it now possible to scan an entire region (such as the
thorax or abdomen) is one breath hold (less than 1 minute).
The pitch of a helical scan has a bearing on the sensitivity of
the slice profile and is defined as the ratio of the distance trav-

ersed by the gantry for one 360° rotation to the nominal colli-
mation aperture along the z direction. Usually, the pitch will
be around unity. Fractional pitches result in significant in-
crease in X-ray doses without concomittant increases in slice

profiles, while pitches with greater unity significantly de-
grade the slice profile [3, 13, 41].

The projection data, R (y), is now dependent on z as well.
Denoting this dependence by R,(13,'y), let us now consider
the reconstruction of a slice at z =z1,. Letus also consider a
source angle, 13. It is quite possible that there is no measure-
ment for J for z = z. Hence, we will have to estimate the
fan-beam projection data, from neighboring measurements
around; that contain the fan-beam data for 13. Also, let 13h be
the source angle for which there is measurement at;.

Full Scan with Interpolation

In this method [5], the data is acquired for a range of 4it radi-

ans. A set of data for f3 in the range [O,21t) for the z =;

plane is estimated. Let us estimate the projection data for 13 in
the z,, plane. Obviously, we do not have a measurement for 13

(unless 13, 3). Consider the measurements available for 13
on both sides of the plane. Let z be the nearest gantry position
on one side for which there is a measurement for 13, Let z, be

the next closest position for which there is a measurement.
This position will lie on the opposite side of zh, opposite to
that of z. It is obvious that there are 3600 of fan-beam meas-
urements between z and Zb with z, � z, � z,and 3h E [13,13

+2ic]. It is then easy to estimate:

(55)

where w = (13+27r —
13h)127C and w, (l3 —13)/27r. This is es-

sentially linear interpolation. Hence, all the projection
data for the range 13 E [0,2t) for z, isestimated before apply-
ing the standard fan-beam back-projection algorithm. Note
that a measurement set over 41t range is needed to estimate all
the data over a 2it range in the z=z,plane.

Since this backprojection is a linear operation, an alterna-
tive is to pre-multiply the data with an interpolation weight.
w(f3,y), and perform filtered back-projection on the entire set

of data covering a 4t range. This weight is given by:

w(13 i') 2zi
Half-Scan Methods

(56)

In the standard fan-beam algorithm, we argued that we really

need data only for 13 E [0,it + 2y,j. The overlapped measure-
ments are compensated by using a smoothed (continuous and
differentiable) one-zero weighting filter in the reconstruction
algorithm. Using this concept, it is easy to see that reconstruc-
tion can be achieved with less than 4,t views. In fact, we need
on 2it + 4'y views. In this case, the weighting factor w(13,y) are
slightly complex and their formulation is beyond the scope of
this discussion, Refer to [5] for more details. This method is
called the half-scan ivith interpolation method. There are two
benefits to this method, First, a lesser number of views are re-
quired. Second, there is less table motion per slice, and hence
the slice profile will be much better.

In the half-scan with extrapolation method [5], the data is
acquired for only 2it views. In this case, for npnredundant
data, interpolation is used. For data in the redundant re-
gion, extrapolation of data on the same side of the plane zh is
used. It has been found that this extrapolation causes no deg-
radation in the reconstruction. The advantage of this method
is that only 2ir views are required. The weighting factor,
w(13,'y), is discussed in detail in [5].

Spiral CT has implications in volumetric analysis. In
standard CT, the sampling in the z direction is not the same
as in the (x,y) plane, and this leads to gross errors in volume
reconstructions. Using spiral CT, true isotropic sampling
[21] can now be attempted, and this leads to better multipla-
nar reformating (MPR) [38] and volume visualization, For
instance, in CraniofMaxilio-facial reconstructive surgeries
[38, 18], such isotropic sampling reduces artifacts and volu-
metric errors.
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1. The projection data, R (7), is weighted with D cos yto
obtain R',(y). The sampled version is denoted as, where a is
the angular sampling interval.

2. The weighted data,, is then convolved with the
weighted filter:

I na (30)
g(na)= H(na)

S1fl nil)

H (nil) is any of the back-projection filters we discussed
previously and this may be windowed (with a windowing fil-
ter such as a Hamming window). This filtering gives us the

intermediate result Q ('y.
3. The data in the sampled (x,y) domain can then be recon-

structed using:

1
(ye)

(31)

42 k=lL(i.X,JY,13k)

where y' is angle that the ray passing through (iAxj y) makes
with the source-origin line. Obviously, this ray may lie be-
tween two other rays in the projection data and suitable inter-
polation (as discussed before) will have to be employed to
obtain the interpolated Qk("t).

Fan-Beam Projections with
Equidistant Collinear Detectors

In this configuration, the detectors are placed in a linear array
(see Figure 12). This setup is very popular in industrial CT for
two reasons. First, in industrial CT, it is easier and more con-
venient to have the object rotating about the axis, rather than
have the source detector assembly moving around the object.
Second, it is easier to place the detectors in a linear array than

along a ring.
Even though the detector array is usually at a distance

from the origin, we may consider the detector array to be
placed on a straight ][ine passing through the origin (Figure
12). Let s be the distance along this line from the origin. In
this geometry, uniform sampling is done in the (13,s) domain
and its relationship with the (x,y) domain is given by:

Ds
1= ande=13+tan —

VD2+s2 D

I is independent of 13, but has a highly nonlinear relationship
with s. The Jacobian J is found to be and the reconstruction
equation can be written as:

f(r,)= TJJ1 R ()E
4ir ° -

( -is Ds ' D3
I rcos(13+tan ——i1)— I dsdi3D ,/5i +s2 ) (D +s2 )32

where R(s)=P ( introducing two new
an 7-) D+

variables, U and s', where[20]:

U = (D+ rsin(13 — ))/ D and s' = D
rcos(13 —) (34)

D+rsin(13—)

and using these in the reconstruction equation along with the

property,

(35)-r R (S)He (s' -s)
(D2 +s2 )12

ds

The inner integral is the standard back-projection filtering
operation on a weighted projection data set using the weight-
ing factor _2. There is no weighting of the back-projec-
tion filter, s 1 the equiangular case. The back-projection
operation, denoted by the outer integral, is weighted by the
factor for each ray. The discrete version of this reconstruction
equation is very similar to the one discussed in the equiangu-
lar case.

Fan-Beam Reconstruction from Limited Views

In the parallel-beam case, the domain [t,n,t,n] x [0,it) com-

pletely covers a circle of radius t,, in the polar (t,8) coordi-
nates, or a rectangle if we express (1,0) in Cartesian
coordinates (Figure 13). Extending this concept to the equi-
angular fan-beam projection, two projection rays are identi-
califl31—y1 = 32—72—180° andy1 =—72 Usingtherelationship

= D siny and 8= 13+y, and assuming that 13 varies from 0 to
180°, Figure 13 shows the mapping from the (13,y) domain to
the (1,8) domain. We need to find a domain in (13,y) that maps

to the rectangle in the (1,8) domain. Let us consider the re-
gions marked "B" shown in the picture. In these regions there
are no measurements at all. On the other hand, the regions
marked "A" are identical and hence there are double meas-
urements for this region. This is evident from the fact that the
regions where t> 0 and 0> 180° are the same as the regions
where t <0 and 0< 180°.

In order to cover the missing data regions "B," if we in-
(32) crease the scanning in f3 to an additional 2y,,, angle, we will

also be increasing the area of overlap (Figure 13(d)). Let us
estimate the overlapped regions in the (13,y) domain, In these
regions, we know that:

(36)

(33) TJsingtherelationships I3—y = 132—72—180° andy1 =—'Y2
and noting that the fan-beam angle yis always less than 90°, it
is easy to show that the overlapped regions are given by:

0 � 132 � 27m + 27m

180° + 272 � 3i � 180° + 27m (37)
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In [20], an example is demonstrated for the reconstruction
from 1800+ 2y projections without any correction for the
overlapped data. Naperstek [25] shows that the usage of a
one-zero window filter, which essentially zeroes out data in
one of the regions of the overlap, gives only a marginal im-
provement. However, in [27] the author demonstrates the re-
sults of using a smoother window that is continuous and has a
continuous derivative. The results are indistinguishable from
a full 360° reconstruction. The poor results for the one-zero
window is due to the fact that the sharp cutoff of the one-zero
window introduces high frequencies that are amplified by the
10)1 filter.

The advantages of reconstructions from limited views are
obvious. There will be less exposure to ionizing radiation and
faster data acquisition leading to fewer patient-motion arti-
facts. Figure 14 shows some typical slice reconstructions.

Cone-beam CT

In 3-D, the Radon transform is obtained by integrating along
planes. If we represent a plane by (13,1), where is a unit 3-D
vector in a unit sphere representing the orientation of the
plane with respect to the coordinate axes and 1 represents the
distance of the plane from the origin, then we consider all
planes that intersect the object and obtain the planar integral
of f(x,y,z) along that plane. The obtained result gives us the
Radon transform data in 3-D. However, in practice, we only
have the line integral g through an object. How do we obtain
the line-integral data? In fan-beam tomography. only a thin
slice (or plane) of X-rays, diverging from a point source, is
pennitted to penetrate the object by placing a suitable colli-
mator in front of the source. If this collimator is removed, a
divergent cone beam will emerge from the X-ray source and
penetrate the object. The line-integral data through the object
is collected on the opposite side of the source by a 2-D array
of detectors. The source-detector array assembly will tra-
verse along a suitable locus, and measurements are captured
at various points along the trajectory to get a set of projection
data. If the source locus is a complete trajectory, then the pro-
jection data set is complete and the object can be completely
recovered. The completeness of a trajectory is discussed in
later in this article.

Some Definitions for 3-D Reconstructions

Letf(x) =ftx,y,z) denote the object. The support for the object
ftx) is a ball of radius R in R.. Let i be a unit vector in , i.e.,

= (cos4 sin8, sine sinO, cosO)T, where 0 and Ô are eleva-
tion and azimuth angles in spherical coordinates. The vector

may also be represented as 13e' = (13, 13., 3) where 3,
f3, and 3±2, are orthonormal. We shall drop the e, subscript
on f3 without any loss of generality. In 3-D, the Radon trans-
form is defined as:

where 1 is the perpendicular distance from the origin to the
plane of integration, and 13 is a unit vector along 1 that defines
the orientation of the plane. f([3, 1) must be known over all

(13,1) for the data to be complete. The 3-D inverse Radon
transform can be shown to be [4, 7, 34]:

(2)2
J$ f(13,x13in e d0dp (39)

The measured data, g, is not the Radon transform data,
7(13, 7), since the X-rays that penetrate the object are line inte-

grals and not planar integrals. We need to convert the meas-
ured line-integral data to Radon transform data. in order to do
so, we define an intermediate representation. This function
can be derived from the Radon transform as well as the line-
integral data and is then used to reconstruct the original object

f(x). First we define [32, 33]: 13.l) = lime (1 t) dt
where H(t) is the kernel defined earlier. Since the support of
f(x) is a sphere of radius R, we define F as the restriction of P
on the set, i.e., F is defined over the domain Si2 x [—R,R],
where S2/2 is a unit hemisphere. Defrise et al. [9] examined
the errors that arise out of such restrictions on P. We know
that lim0 J1)(/ —t)h(jdt = ' {wh(w)} and, using the

central slice theorem, it is easy to show
= f(13,l). If F is known on its entire

domain, we can reconstructf using:

f(x)=2jjThJ 12 F(13.l)dtsine dOdd (40)

Relationship Between the Cone-Beam Data and F(13,1)
The source trajectory always lies outside the support of the

objectftx). Denoting the source position by the vector ,then

the line integral (the vector ct gives the direction of each ray)

is nonzero only along the rays, leaving within a cone that
covers the support of the object. The line integral is then
given by [32, 36, 37]:

(41)

g(a,)=$ f(+ta)dt=$ f(+t)dt; Van R

By defining a over rather than S2/2 we are able to con-
sider the Fourier transform of g(ct,) for fixed 1:

G(f3,) = $3 g(c,)e° da (42)

=s:s,

Performing a change of variables v + tci. followed by

.7U3,i')=$3 f(x(l—J3.x)dx (38) substitution of t by l/t it is easy to show that:
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13. (a)An image, f(x,y), and(b) its sinogram (reprinted with permission from iL. Prince et aL[24]). (c) This figure demonstrates

limited-view fan-beam reconstruction. If 13 ranges only from 0 to 1800, then we have duplication of data in region A, while there is no

data available in region B. (d) If we increase the scanning angle to 180 + 2 y, then we will be covering the entire (I, B) range. How-
ever, the duplication of data will occur over a larger region.
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G(13,) = 2rcF(f3,' 3)

The objectjlx) can now be constructed from the g(a,).
The relationship graph betweenf f, F, g, and G is shown in

Figure 15. Since g(a,c) is a slowly increasing function, we
have to consider G(f3,c1) as a generalized Fourier transform

of g(a,) [37].

Computing G and F
The various stages in the reconstruction and associated issues
are discussed below:
• Computation of G(I3,)) from g(c)): The Fourier trans-

form of g(c) may not exist and its computation using the
DFT may result in errors [32]. It has been found that much
of the degradation during reconstruction occurs at this
stage [35].

e Computation of F(f3,l) from G(f3,): To compute f(x)
from F(13,l) it is desirable to have values of F(3) at uniform
increments of 1 for each 3, which, in turn, uniformly sam-

(43) pled in e and . Since G(3,) is known only at a finite
number of, an interpolation is needed to obtain F(!3,l) on
a uniform grid. One method is to use the linear interpola-
tion [35]:

— ii

F(l)=J{G(
1k +G(,fr)

'j 1k

(44)

where and k are known, and l = 13 I and 1k =
While the samples, k' may be uniformly sampled in their do-
main, the corresponding 1k = 13 'k is not uniformly spaced.
Also, linear interpolation may not be the best way to calculate

F(13,l). Lagrange interpolation [17] can be expected to per-
form better than linear interpolation because uniformly
spaced pivotal points are not needed, Cubic splines may also
be considered since they are computationaily more efficient
than Lagrange methods.
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14. Reconstructed images. (a) Shepp-Logan head phantom. (b) Reconstruction of the head phantom from parallel beam projections. (C)
Typical CT fan-beam reconstruction of an abdominal section ((a) and (b) have been reprinted with permission from Kak and Rosenfeld

[19]).



Completeness of I)ata

fix) can be reconstructed if F(13,l) can be determinedon its
whole domain. F(13,l) can be determined from G(13,c1) (and
hence from g(a,c1)) if, for each direction, 13, there exists a
source point, cIa, such that 13 = 1. The locus of the source

point that satisfies 13 = 1 gives a complete geometry and
ari:ifact-free reconstruction is possible. Since 111311 =1, the
length 1 predominantly comes out of the norm of c1 denoted

by IIII, and the angle between f3 and. This condition im-
plies that: "If on every plane that intersects the object there
lies a vertex (source point), then one has complete informa-
tion about the object" The above condition is the same as
Tuy' s [37]. Some examples of such complete trajectories are:
three twists of a helix, two periods of sine on a cylinder, twin
orthogonal circles, baseball seam curve, etc. The standard
circular trajectory used in 2-D tomography is obviously in-
complete, and various analytical continuation methods [23,
14] have been used to obtain reasonable reconstructions from
incomplete data.

Other Reconstruction Methods in Cone-beam CT

In the discussion on cone-beam CT reconstruction, we have
concentrated exclusively on B.D. Smith's method. In reality,
there are three distinct methods due independently to Tuy
[37], Smith [33] and Grangeat [12]. All of these methods
have been derived from the original work by Kirillov [22],
which deals with cone-beam reconstruction from an n-dime-
nsional complex space. Defrise and Clack [8] derive a very
elegant result that integrates all three methods. We will now
consider briefly Grangeat's results, and explain Defrise and
Clack's formulas. Let us consider the 3-D inverse Radon
transform equation:

1 gtrO
f(x)=— 2J j —f(f3,x'13)sinOd8d

(2m) 0 61

It is easy to see that si2 f(f3 1) w2{f(f3 1)]}. It is

also to be noted that 2 = koI2 and koI2 can be easily used in-
stead in the above equation. Smith uses the koI2 formulation in
obtaining the intermediate F function, while Grangeat pre-
fers to calculate and re-bin the cone-beam data directly to

-7(13,1) and then calculates _- ](3,1) using the differen-

tial operator once more. This is equivalent to using the 0)2
filter. Grangeat develops an elaborate method of relating the
line integral in the detector plane containing the cone-beam
data to the first derivative of the Radon transform. Defrise
and Clack integrate these two methods along with Tuy's as
follows. Let g(a,cI) be the measured cone-beam data as de-
fined previously. Let G(f3,) be an intermediate function de-
fined as:

G(f3,'I)=
1S2

g(a,)[ah1 + bh2 ](a .13 )dc

mediate function. g is the measured cone-beam line-integral data.
To reconstructf we first calculate G and then obtain F.f is then
recovered by filtering F and back-projecting the result.

where h1(t) = r'{IwI} andh2(t) =iLF'{co}. Wecanderiveftx)
as follows:

f(x)=±f2 F'(13,x.13)d13
(47)

where F' is the convolution QF(13,l)[ch1+ dh2](l — t)dtand F is

given by F(13,l) = G(i3, 3). It is assumed here that D satis-
fies Tuy's (and Kirillov's) trajectory condition, Also, the re-
lation ac + bd = 1 must be satisfied. We obtain Smith's
solutionby setting (a, b, c,d} = (1.0.1,0}, Grangeat's solution

by setting {a,b,c,d} = {0,—2x.0,—lI2rc}, and Tuy's solution

by setting {a,b,c,d} { 1/2.i/2,0,—2i}.
The cone-beam reconstruction algorithm is 0(N4) and

computationally very expensive. Axeisson and Danielsson
[1] have developed a fast implementation of Grangeat's

(45) method in 0(Nlog N) time using linograms [101 and direct
Fourier methods. Another important approximate method for
cone-beam reconstruction is due to Feldkamp [11] where the
source trajectory is a circle. Wang et al. [40] have derived a
generalized Feldkamp method with spiral scanning, and this
method has practical scanner implementations in microto-
mography for spherical and rod shaped objects.

Summary

In this article, we havebriefly looked at reconstruction in 2-D

and 3-D tomography. We have not dealt with some of the is-
sues in reconstruction such as sampling and aliasing artifacts,
finite detector aperture artifacts, beam hardening artifacts,
etc.. in greater detail since these are beyond the scope of an
introductory tutorial. CT as an engineering discipline is over
25 years old and the body of literature is vast. We have also
not examined the 3-D visualization issues in CT. This topic
should be dealt with separately.

(46)
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15.f is the Radon transform of the 3-D objectf(x). F is the inter-
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