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Nonlinear Anisotropic Filtering of MRI Data 
Guido Gerig, Olaf Kubler, Ron Kikinis. and Ferenc A. Jolesz 

Abstract- Despite significant improvements in image quality 
over the past several years, the full exploitation of magnetic 
resonance image (MRI) data is often limited by low signal-to-noise 
ratio (SNR) or contrast-to-noise ratio (CNR). In implementing 
new MR techniques, the criteria of acquisition speed and image 
quality are usually paramount. To decrease noise during the 
acquisition either time averaging over repeated measurements 
or enlarging voxel volume may be employed. However, these 
methods either substantially increase the overall acquisition time 
or scan a spatial volume in only coarse intervals. In contrast 
to acquisition-based noise reduction methods we propose a post- 
process based on anisotropic diffusion. Extensions of this new 
technique support 3-D and multi-echo MRI, incorporating higher 
spatial and spectral dimensions. The procedure overcomes the 
major drawbacks of conventional filter methods, namely the blur- 
ring of object boundaries and the suppression of fine structural 
details. The simplicity of the filter algorithm enables an efficient 
implementation even on small workstations. 

We demonstrate the efficient noise reduction and sharpening of 
object boundaries by applying this image processing technique to 
2-D and 3-D spin echo and gradient echo MR data. The potential 
advantages for MRI, diagnosis and computerized analysis are 
discussed in detail. 

I. INTRODUCT~ON 

N medical imaging we often face a relatively low SNR I with good contrast, or a low contrast with good SNR. 
Fortunately the human visual system is highly effective in 
recognizing structures even in the presence of a considerable 
amount of noise. But if the SNR is too small or the contrast too 
low it becomes very difficult to detect anatomical structures 
because tissue characterization fails. A definition of overall 
image quality includes physical and perceptual criteria. Fur- 
thermore, i t  largely depends on specific diagnostic tasks. In 
some cases a high spatial resolution and a high contrast are 
required, whereas in other cases more perceptual criteria may 
be favored. For a visual analysis of medical images, the clarity 
of details and the object visibility are important, whereas for 
image processing a high SNR is required because most of the 
image segmentation algorithms are very sensitive to noise. 

There are several ways to improve SNR, and they can be 
divided into subcategories according to time requirements, res- 
olution criteria, hardware- versus software-based techniques. 

Methods affecting acquisition time or pixel (voxel) di- 
mensions. 
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- Time domain averaging (averaging repeated acquisi- 
tions). Problem: inefficiency. 

- Scanning with larger voxels. Problem: loss of resolu- 
tion, mostly in the out-of-plane direction. 

Methods without time and/or resolution penalty. 
- Signal processing during acquisition (i.e., variable 

bandwidth: narrower bandwidth for the second echo 
of double echo spin echo acquisitions). 

- Improvement of acquisition hardware (increase signal 
or reduce source of noise). 

- Postprocessing of raw data or image data (filter 
techniques). Problem: blurring, loss of resolution, 
generation of artifacts. 

Although the acquisition parameters can be optimized re- 
garding SNR and contrast, methods to reduce noise (e.g., 
increasing the number of excitations) usually result in a 
signiticant increase in the overall acquisition time. While 
providing access to important new anatomical and functional 
information through high-speed acquisition, or high spatial 
resolution, advanced imaging techniques are often penalized 
by a decrease in image SNR. 

Filtering techniques have the advantage of not affecting 
the acquisition process. In linear spatial filtering, the con- 
tent of a pixel is given the value of the average brightness 
of its immediate neighbors. Simple spatial averaging. often 
called “low-pass filtering,” does reduce the amplitude of noise 
fluctuations, but also degrades sharp details such as lines or 
edges. The filtering does not respect region boundaries or 
small structures, and the resulting images appear blurry and 
diffused. This undesirable effect can be reduced or avoided 
by the design of nonlinear filters, the most common technique 
being median filtering. Edges are retained. but the filtering 
results in a loss of resolution by suppressing fine details. 
Another approach is adaptive filtering (see (11 for a detailed 
survey), which entails a tradenff between smoothing efficiency, 
preservation of discontinuities, and the generation of artifacts. 
When developing a filtering method for medical image data, 
image degradation by blurring or by artifacts resulting from a 
filtering scheme is not acceptable. The following requirements 
should ideally be fulfilled: 

a) minimize information loss by preserving object bound- 

b) efficiently remove noise in regions of homogeneous 

c) enhance morphological definition by sharpening discon- 

Recent developments based on anisotropic diffusion filtering 
overcome the major drawbacks of conventional spatial filtering 
[3], and significantly improve image quality while satisfying 

aries and detailed structures, 

physical properties, and 

tinuities. 
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the main criteria stated above. Special extensions for filtering 
multichannel and 3-D data make the method especially appro- 
priate to enhance various types of magnetic resonance (MR) 
image data. 

In the present paper, the term volume data will be used 
independently of the acquisition type. With volume data we 
mean a volume-covering acquisition with isotropic or nearly 
isotropic voxel dimensions. Such data can be measured as a 
3-D FT acquisition or as a 2-D multislice acquisition with thin 
slices and no gap between the slices. 

11. METHOD: ITERATED SPATIAL ANISOTROPIC SMOOTHING 
Perona and Malik [2], [3] developed a multiscale smooth- 

ing and edge detection scheme which is a powerful new 
concept for image processing. Their anisotropic diffusion 
filtering method is mathematically formulated as a diffusion 
process, and encourages intraregion smoothing in preference to 
smoothing across the boundaries. In their filtering method the 
estimation about local image structure is guided by knowledge 
about the statistics of the noise degradation and the edge 
strengths. 

The following description is based on the anisotropic diffu- 
sion process as proposed by Perona and Malik. 

diifumion function fl0" function ;1p& ~~ ~~~ ibxvz 
a b 

Fig. 1. (a) Diffusion functions (diffusion strength c versus gradient TI). 
(b) Flow functions (flow @(TI)  versus gradient TI). C I  is given in scales 
of the parameter A'. 

to define @(TI) as the product c * T I ,  called flow. The 
flow functions related to c1 and r2 are plotted in Fig. l(b). 
The maximum flow is generated at locations with gradient 
V I  equal to K .  When decreasing below K ,  the flow reduces 
to zero because in homogeneous regions only minimal or no 
flow takes place. Above K the flow function again decreases 
to zero, halting diffusion at locations of high gradients. A 
proper choice of the diffusion function not only preserves, but 
also enhances edges while being numerically stable [3], [ 5 ] .  
To simplify the mathematical treatment of edge sharpening, 
the amplification of the edge strength is usually considered 
at the point of inflection. It is supposed that within the near 
neighborhood of the point of inflection the slope of the edge 
will increase with time (number of iterations). 

of the edge slope 

A. Mathematical Principles of the Nonlinear Anisotropic 
Filtering Method 

Smoothing is formulated as a diffusive process, which 
is suppressed or stopped at boundaries by selecting locally 
adaptive diffusion strengths. In any dimension this process can d t  i).r W i3:r d.r d.1.1 d.i;3 ' 
be formulated mathematically as follows, assuming no sinks 
or sources ((4, pp. 971): 

Assuming the edge is oriented along the y-axis, the variation 
over time becomes 

(4) 
D i3I d2c i3I dc  @I  @I  

+ 2 -  7 + r -  - --  _ _ _  - 

Fig. 2 illustrates the variation of the edge slope along the 
edge profile. By selecting a diffusion function c(z. t ) ,  and 
utilizing the error function as an ideal model of a blurred step 

i) 
- ~ ( 5 .  t )  = div(c(Z, t)Ou(Z. t ) ) .  at 

The diffusion strength is controlled by c(c.t). In our data 
filtering scheme the vector Z represents the spatial coordi- 
nate(s). The variable t is the process ordering parameter; in 
the discrete implementation it  is used to enumerate iteration 
steps. The function U ( % ,  t )  is taken as image intensity I ( Z ,  t ) .  
The diffusion function c(T. t )  depends on the magnitude of 
the gradient of the image intensity. It is a monotonically 
decreasing function ~(7. t )  = f ( lVI(5.  t) l) ,  which mainly 
diffuses within regions and does not affect region boundaries 
at locations of high gradients. 

Two different diffusion functions have been proposed: 

c l (7 ,  t )  = exp ( - ( ____ l PI!. "'I) 2 )  

edge [Fig. 2(a)], the slope change was calculated along the 
edge profile. Simulations were done with varying parameters 
K and the two diffusion functions c1 and c2. The edge gradient 
(first derivative) is represented in Fig. 2( b). Fig. 2(c) shows 
the slope change along the edge profile for c1 and for the 
value of K: giving the maximum sharpening effect ( K  = 0.23). 
The positive central portion of Fig. 2(c) represents the region 
of increasing slope, the negative sidelobes the region of 
decreasing slope. Additional positive sidelobes indicate that 
there is another increase of slope in the foot and the shoulder 
regions of the edge, which creates an initial "round off" of 
the edge function. 

The anisotropic diffusion has the property of blurring small 
discontinuities and sharpening edges. Fig. 3 illustrates the 
filtering of a I-D, blurred step edge (3a) and a blurred 
and noisy step edge (3) as a function of the number of 
iterations. 

Fig. l(a) shows the monotonical decrease of the diffusion 
coefficient with increasing gradient. If the gradient is large, 
a discontinuity is assumed and the diffusion is halted. The 
parameter K: is chosen according to the noise level and 
the edge strength. To understand the relation between the 
parameter K: and the discontinuity value VI,  it is proposed 

B. Assumption About 

The anisotropic diffusion as described performs a piecewise 
smoothing of the original signal. The propagation of infor- 
mation between discontinuities results in regions of constant 
intensity or linear variations of low frequency. The assumption 
of piecewise constant or slowly varying intensities is a good 

Structure: Image 
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Fig. 2. Variation of edge slope (gradient) with time, (a) Blurred step edge. (b)  Edge gradient. (c) Initial rate of change of gradient. 
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Fig. 3.  Iterative edge sharpening and noise suppression. (a) Blurred step 
edge. (b) Blurred and noisy step edge. 

estimate to model MR image data, which comprise smooth 
regions separated by discontinuities, representing various tis- 
sue categories distinguished by different proton densities and 
relaxation properties. A tissue category is characterized by a 
specific intensity level which can be assumed to be approxi- 
mately constant over the image plane if the MR scanner is 
optimally tuned and if nonlinearity artifacts are precorrected. 
From the anatomical point of view this piecewise constancy 
can only be partially true. 

If the original signal were not constant or not slowly 
varying, a filtering method such as ours would fail. Noisy 
intensity surfaces of constant slope would be broken into 
several homogeneous patches separated by newly generated 
discontinuities. Saint Marc and Medioni [6] presented a so- 
lution for the filtering of range data where depth is directly 
encoded as gray-level intensity. They applied the adaptive 
filtering not to the original signal but to its first derivative, 
generating patches of constant slope. 

The power of the anisotropic smoothing scheme proposed 
herein lies in the fact that it deals with local estimates of 
the underlying image structures, which are highly flexible. 
Discontinuities are preserved and their position is not affected. 
Intensity fields of a weak slope remain nearly unchanged if the 
slope falls within the monotonically increasing part of the flow 
function (gradient values below IC). 

I(x- A X) I(x) I(x+ A X) 

Fig. 4. One-dimensional network structure. Circles represent pixel nodes 
I ( . r )  linked together by arcs. and @.,. are the flow contributions. 

C. Discrete Formulation of Anisotropic Smoothing 

The filtering of discrete signals requires a reformulation 
of the methods defined for the continuous case: Instead of 
differentiation, estimates about local gradients are calculated as 
differences between neighboring data elements ([4, pp. 1041). 

D. I - D  Filtering 

In order to provide an appreciation of anisotropic nonlin- 
ear diffusive smoothing, we first present the 1-D case. The 
intensity change in one iteration step is defined as the sum of 
the flow contributions between neighboring pixel intensities. 
The structure is simulated as a network, wherein the center 
points of pixels represent nodes and are linked together by arcs, 
whose flow characteristics are determined by the conductivity 
function (Fig. 4). 

The 1-D discrete implementation derives from the continu- 
ous diffusive process as follows: 

i3 
- I(x. t )  = div[c(x. t )  * grad I ( z ,  t ) ]  
at 

= VT[C(Z, t )  * V I ( z ,  t ) ]  

* (I(x + AX, t )  - I ( x ,  t ) )  

1 * (I(z, t )  - I( .  - AX, t ) )  

= @'right - @left 1 = 1 
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Fig. 5 .  One-dimensional iterated anisotropic smoothing. Top to bottom: 
original function and different stages of smoothing. Right-hand column: 
histogram of gradients and flow function (vertically flipped). 

d 
at I ( t  + A t )  z q t )  + at * - I ( t )  

= I ( t )  + a t  * (ar - a[). 
(6) 

Stability of the iterated processing scheme is obtained by a 
proper setting of the integration constant At  (see Appendix A). 

Performing the anisotropic diffusion on I-D test functions 
allows systematic study of the signal change over time. Note 
the important capability of smoothing noise while enhancing 
discontinuities. Fig. 5 shows the iterated smoothing of an 
original test function which is generated as a rectangular 
function corrupted by additive white noise. In addition to 
the I-D functions the histogram of gradient magnitudes and 
the flow function (vertically flipped) were plotted (right- 
hand column). The depletion of gradient values generating 
large flow contributions (values around the peak of the flow 
function) is significant, such gradients are either smoothed or 
sharpened (shifted to higher values). 

E. 2 -0  Filtering 

The 2-D procedure is a simple extension of the 1-D discrete 
implementation: 

3 
- I (y .  t )  = div[c(Z, t )  * grad I ( r .  t ) ]  
dt 

= OT[C(5 ,  t )  * V I ( % ,  t ) ]  

= - c(z.t) * -I(z.t) 
l3X ax 

- c ( x -  T . y > t )  Ax 

1 * (1 (x .  y, t )  - I ( X  - A, y. t ) )  

Fig. 6. Two-dimensional network structure. 

+ 4 Y [.(..+ ? A )  

* ( I ( , r .  y + -1g. t )  - I( .c.  y. t ) )  

- C ( T . ? J  - $ . t )  

* ( I ( . r .y . t )  

- I ( x .  y - ay. t ) )  1 
= @east - @ue\t + @'north - @'south. 

The 2-D discrete implementation results in simple, local op- 
erations replicated over the digital image. In the 2-D network 
(Fig. 6) in a first step the signal flow is Calculated between 
neighboring nodes. In a second step the node intensities are 
updated by the local sum of the flow contributions: 

i3 
d t  

I ( t  + A t )  z I ( t )  + a t  * - I ( t )  

To obtain better isotropy, flow is also calculated between 
diagonally neighboring pixels (dashed connections Fig. 6), 
resulting in an eight-way-connected network. The longer dis- 
tance between diagonal neighbors is taken into account by 
setting Ad to fi. Our experience has shown that inclusion 
of these grid points is sufficient and more elaborate inte- 
gration schemes are not necessary. The integration constant 
At must be adjusted to the different neighborhood structures 
(Appendix A). 

F. Convergence of Iterated Smoothing 

The diffusion process as proposed by Perona and Malik 
[3] did not incorporate a convergence criterion. Nordstrom [5]  
argued, that at the limit of infinite time, however, the image 
would converge to a constant, and that remarkable impressive 
edges could be obtained at some stage of the iterated filtering. 
In the discrete application of the diffusion process, it can be 
stopped after a few iterations. For large gradient values, the 
flow function decreases to zero (limits in hardware precision) 
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and completely arrests any diffusion. We prespecified the 
maximum number of iterations to halt diffusion. 

Nordstrom [5]  unified the concepts of anisotropic diffusion 
and variational regularization. He claimed that his algorithm, 
called “biased anisotropic diffusion,” combined the better 
properties of both concepts. The algorithm converges to a 
steady state solution and only requires the solution of a single 
boundary value problem over the entire image domain. Biased 
anisotropic diffusion was shown to be a method for solving 
a well-defined mathematical problem. Nordstrom’s method is 
closely related to the anisotropic diffusion described by Perona 
and Malik, only differing in an additional term expressing 
the deviation between the original I(t,-,) and the filtered 
image functions. Equation (9) describes the 1-D discrete 
implementation of the biased anisotropic diffusion: 

The bias term ( I ( t0 )  - I ( t ) )  is responsible for the mathe- 
matically sound formalism and the satisfying convergence 
property, but it does not influence the local decisions of en- 
hancement versus blurring. The images are repeatedly filtered 
until a steady state is reached, no number of iteratons has to 
be prespecified. 

For a small number of iterations, the results of the unbiased- 
and biased anisotropic filtering are supposed to be the same. 
In the limit, however, a nice convergence becomes very im- 
portant, as it only guarantees image structures to be preserved. 

G. Extensions for Optimal Filtering of 3-0 and Multi-echo 
MR Data 

The formulation of the anisotropic smoothing as a diffusion 
process on a regular lattice of pixel intensities easily allows 
a special adaptation to MR image data. The 2-D filtering 
scheme described above is appropriate for the enhancement 
of single slice data. If volume-covering data are acquired with 
isotropic or nearly isotropic voxels the filtering should make 
use of its three-dimensional nature, because the significantly 
enlarged neighborhood results in a much better noise reduction 
and in an enhancement of edges in 3-D. Another case is the 
acquisition of multi-echo MR image data, resulting in multiple 
measurements at one spatial location. Noise can be assumed 
to be independent between the multiple channels, while the 
correlation of the spatial location of discontinuities on two or 
more echoes helps to further increase the sensitivity of the 
local filtering to significant image structures. An augmented 
filtering scheme optimized to process the two special data 
types is described in the following sections. 

I )  Filtering of 3-0 Data: The formulation of a 3-D diffusion 
process follows directly from the original anisotropic diffusion 
equation where % corresponds to (x. y. z ) .  

The total of the flow contributions at each node is now 
taken from a 3-D neighborhood of volume elements (voxels) 
including the 6 immediate neighbors or the 26 voxels within 
a 3 x 3 x 3 voxel window. This increased number of samples 
results in a much better noise reduction and in an enhancement 

of 3-D discontinuities, which allows a more accurate preserva- 
tion of the continuity of structures in 3-D space. When dealing 
with noncubic voxels (one voxel dimension significantly larger 
than the other two), the larger distance in one dimension is 
taken into account by setting the correct absolute distance into 
the calculation of the gradients and the diffusion coefficients. 

2) Filtering of Multichannel Data: To obtain maximum 
information from a single clinical MR exam, usually two 
echoes are measured. The different measurements at one voxel 
location represent vector-value information, the components 
of which describe different physical properties. They can lead 
to a better discrimination of tissue characteristics if analyzed 
together, providing the anatomical structure can be distin- 
guished on both channels. This permits the development of an 
enhancement filter working simultaneously on both channels, 
assuming perfect spatial coincidence. In this case, two network 
structures represent the two image channels of a measured 
original slice. The discontinuities between neighboring nodes 
in both nets determine the amount of diffusion. A coupling 
between the two networks can be achieved by combining the 
corresponding diffusion coefficients between equivalent nodes. 
We used the Euclidean Norm to combine the information of the 
multiple channels, which requires a little more computational 
effort than taking the average of the gradient magnitudes 
or choosing the maximum of the two gradient magnitudes, 
but has advantages because the former too strongly supports 
discontinuities observed in  both channels whereas the latter 
does not amplify correlated structural phenomena observed in 
both channels. 

d Il(r. t )  = div[cl(s.  t )  * grad 11(C3 t ) ]  
- Of ( I ,  (7. t ) ) ( d i v [ ~ ( ; F .  t )  * grad 1,(F. t ) ]  

tliv[c,(T, t )  * grad 11(C. t ) ]  
div[c,(s. t )  * grad I ~ ( c ,  t ) ]  

r , ( s . t )  = f ( I V I l ( T . t ) l .  p I * ( Z . t ) l )  

= f (JGI,(S. t)* + VI2(F. t)* . 1 (11) 

The combined diffusion coefficients cc (C. t )  are calculated 
by replacing the gradient magnitude lVI(?F, t)I in (2) and (3) 

by JVIl(s .  t)’ + V I 2 ( Z ,  t),. The coefficients e, are used 
in both networks to define the amount of diffusion in each. 
Fig. 7 illustrates the coupling of the two diffusion arcs between 
corresponding nodes. The behavior of the coupled networks 
can be characterized as follows. If discontinuities are detected 
in both nets, the combined diffusion coefficient is larger than 
any single component, and the significance of local estimations 
is increased. If, on the other hand, a discontinuity is detected 
only in one channel, the combined coefficient responds to the 
discontinuity and halts the diffusion. 

A nice property of this multivariate formulation of the 
anisotropic smoothing by coupling the diffusion coefficients 
is the inherent preservation of correlating and contrasting 
effects of image intensities among multiple channels, because 
the diffusion is proportional to the absolute gradient. After 
calculating c. .. the amount of flow and the flow direction is 
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channel 1 We developed a procedure to find most homogeneous re- 
gions in images automatically. After the selection of window 
size and grid spacing, the mean and standard deviation (SD) 
are calculated in windows centered at each grid point. The 
image intensity range is quantized into a set of intervals. The 
window with the minimum SD of all the regions having a 
mean value falling within each intensity subrange is chosen 
to be a representative region. is usually not possible to find 
a homogeneous region for each intensity subrange. The SD 

channel 2 

Fig. 7. One-dimensional network structure of two-channel anisotropic 
filtering. 

calculated in each network individually. A simple averaging of 
different echoes to reduce noise would not have this property, 
because intensity steps with opposite sign could counteract 
each other. 

111. RESULTS 

The filtering scheme has been applied to 2-D and 3-D 
image data with one or two channels. Tests with various 
numbers of iterations and different parameters were made. 
In addition to subjective visual evaluation, it is desirable to 
present quantitative results of the noise reduction. A procedure 
that measures noise in images has been developed and is 
described below. 

A .  Measuring Noise in MR Images 

The methods of measuring SNR for comparing the perfor- 
mance of imaging techniques is described in detail [7]. To 
express the noise-removing efficiency of the filtering quanti- 
tatively a measurement technique is needed. 

Noise resulting from different sources is defined simply as 
the variation representing a deviation from the true value. It 
is assumed that homogeneous, non-textured image areas are 
representative of tissue categories. A “true” value is estimated 
by the mean value of a set of pixels (or voxels) expected to 
belong to the same tissue category, whereas noise is expressed 
by the standard deviation (SD). Finding uniform regions over 
which to measure noise is difficult. A region must be large 
enough to yield a significant result for the SD. On the other 
hand the larger the region the higher the likelihood that 
the statistics will be affected by small nonuniformities such 
as intensity gradients or structural variations. Noise can be 
measured in areas where there is no signal, that is through 
air, but is underestimated (0.655 * SD) due to the rectification 
performed when obtaining the MR magnitude images [7]. 

Canny [8] assumes that the amplitude distribution of the 
gradients tends to be different for edges and noise. In his 
global histogram estimate he computed a cumulative histogram 
of the absolute gradients and supposed the lower 80 percent 
to represent mainly the noise energy. Perona and Malik [3] 
used this “noise estimator” and set the parameter K equal to 
the 90% value of the cumulative histogram of the gradients. 
In the medical image data represented in our current report 
the gradient histogram did not show a significant separation 
between a compact distribution due to noise at low gradients 
and infrequently occurring larger values due to edge responses. 
The right-hand column of Fig. 5 represents typical examples 
of gradient histograms. 

estimation is biased towards lower values by selecting the 
window with the smallest SD. Experiments show, that the 
procedure allows homogeneous areas to be found efficiently, 
the dependence of noise upon the signal level to be calculated, 
and automatic estimates of noise in background and tissue 
regions to be made. A region size of 8 * 8 pixels and a 
subdivision of the intensity range into 25 intervals allows 
relatively large regions which are only minimally affected by 
nonuniformities to be identified. From the resulting list of 
SD’s, two values corresponding to noise in background and 
noise in tissue are selected. 

B. Test Data of a Formalin Fixed Brain Specimen 

We tested the noise reduction efficiency and the ability to 
preserve image structures on a series of images of a forma- 
lin fixed human brain with different numbers of excitations 
(NEX). Acquisitions (TR 2000 ms, TE 20/80 ms) were made 
with NEX of 4, 2, 1 and 0.5. The 0.5 NEX image is acquired 
using the half-Fourier technique. Increasing the number of 
NEX from 0.5 to 4 theoretically results in a decrease of noise 
by the factor A. A visual analysis of the image series in 
selected regions of interest (ROI’s) clearly shows the different 
noise levels (Fig. 8), and exhibits the delineation of finely 
detailed structures in the 4 NEX image which cannot be 
detected in the 0.5 NEX image, although the human visual 
system is extremely efficient in detecting structures even in 
the presence of a considerable amount of noise. 

We applied the filtering scheme to the 0.5 and 1 NEX 
images and compared the results to the unfiltered 4 NEX 
acquisition. Table I displays the results of measuring noise in 
the most homogeneous background and tissue regions. Noise 
in the filtered half-Fourier image is lower than in the 4 NEX 
image, demonstrating the efficient noise removing capacity of 
the filtering. Three iterations of the 2-D filtering were carried 
out using the diffusion function c1 with parameter K = 2.0. 

Fig. 8 depicts enlarged subregions of the first echo image in 
order to compare the detail preserving and edge-enhancement 
ability of the filtering, demonstrating that edges are signifi- 
cantly enhanced while fine details are kept. 

C. 2 - 0  Filtering of Dual-Echo SE Images 

Dual echo spin echo brain images were obtained as part 
of routine clinical patient studies. Imaging was performed 
at 1.5 Tesla using a General Electric SIGNA MRI system 
(Milwaukee, WI) with a double echo sequence (TR 3000 ms, 
TE 30/80 ms) with 1 mm * 1 mm * 3 mm voxel dimensions. 
Contiguous slices (no gap) were obtained by combining two 
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Fig. 8. Images of a formalin fixed human brain specimen (TR 2000 m\.  TE 20 ms. FOV 24.0 cm. dice thickness 5 mm). Comparison 
of 0.5 NEX, 0.5 NEX filtered and 4 NEX (top to bottom). original \ire (lelt) and zoomed ( 2 . 1 . )  (right). 

theoretical Background Tissue 
Acquisition relative noise 1st echo 2nd echo 1st echo 2nd echo 

0.5 NEX I .41 0.M1 0.59 1.23 1.35 
1 NEX 1 .oo 0.50 0.5 1 1.03 0.98 
2 NEX 0.71 0.38 0.38 0.83 0.77 
4 NEX 0.50 0.2X 0.20 0.56 0.59 

0.5 NEX filtered 0.1 1 0.04 0.30 0.4 1 
1 NEX filtered 0.10 0.00 0.2x 0.29 

interleaved sequences. Forty double echo slices were used to 
cover the brain volume. Imaging time was reduced by using 
half-Fourier sampling (0.5 NEX), in which the SNR is reduced 
by a factor of fi compared to one NEX. The imaging time 
was under 8 min. 

If the voxel geometry is highly anisotropic such as in this 
study, a 3-D instead of a 2-D filtering does not substantially 
improve the result because of the relatively low noise smooth- 
ing contribution of voxels on neighboring slices separated by 
a large distance. More helpful is the availability of multiple 
echoes, which are suitable for the application of the new multi- 
channel filtering process, allowing significant noise reduction 
provided by the correlation of the information about image 
structures in several channels. The unfiltered and the filtered 

images are shown in Fig. 9. The white boxes mark most ho- 
mogeneous subregions of background and tissue, giving noise 
estimations for the first and second echo of gn = 4.69 and 
o,~ = 3.21, respectively. Filtering was performed with three 
iterations of the 2-D two-channel filtering with diffusion func- 
tion c1 and k‘ = 6.0. The intensity profile along the white line 
clearly demonstrates the smoothing and edge enhancing effect. 
The difference images between the original and the filtered 
image data illustrate the noise structures removed. Fig. 10 
depicts enlarged parts of the original and filtered slice pair. 

D. Application to 3-0 MR-Angiogrums (“Time-of-Flight ” MRI) 

Fully or nearly fully isotropic volume data may be obtained 
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Fig. IO. Dual echo SF: Zoomctl p,rrt\ I I o i  13:. Y. origindl (tup r o w  1 ml 
tiltsrcd ( l ~ ~ ) t t o n i  rou j 4ic,L,,. 

and tissue rcgion n,, = I .  13. Thrce iterations of thc 3-11 
filtering with A = 2 .  1 M'crt' applied. At'ter smoothing, noise 
i n  thc. tissue region \+a>  reduced lo (T,, = 0.12. 

Fig. 9. Dual echo SE (TR 3000 ms, TE 30jS0 ms, FOV 24.0 cm, slice 
thickness 3 mm, no gap): original slice (top), filtered slice (2-D two-channel) 
(middle), and difference image (bottom). Left column: 1st echo; Right column: 
2nd echo. The intensity profile along the white line is overlaid. White boxes 
indicate regions where noise was estimated. 

by applying special gradient echo sequences. Here, the new 
processing extended to 3-D exhibits its full advantage, because 
local estimation and smoothing is performed over a spatially 
much larger population of measurements. The 3-D filtering 
will become important for imaging techniques in which the cri- 
terion of acquisition speed takes precedence over image quality 
(e.g., to avoid motion artifacts), or in which a certain amount 
of noise degradation is linked to the physical measurement 
and cannot be reduced. 

One example of this situation is MR-angiography techniques 
(MRA), which enhance the contrast of fast flowing substance 
and suppress the intensity of static tissues. The method used 
to obtain the MRA was a multiple thin-slab 3-D gradient echo 
technique [9]. Seventy-two gradient echo slices (TR = 50 ms, 
TE = 5 ms, flip angle = 80") were acquired within 15 min. 
The 15 mm thick slabs were divided with 16 phase encoding 
steps into approximately 1 mm thick slices. The resulting 
image data have 3-D isotropic resolution to yield complete 
information about finely detailed vascular structures. Espe- 
cially important in such a case is the discontinuity preserving 
and enhancing property of a filtering process, because the 
recognition of thin tubular structures is the main goal (Fig. 11). 
Noise was measured within the 8 * 8 windows marked by 
the white boxes, yielding values for background un = 0.65 

E. Applicution to 3-0 Grudient Echo Datu 

The 3-D filtering was applied to a spoiled grass (SPGR, gra- 
dient echo) volume acquisition consisting of 124 contiguous 
coronal slices with 1.5 mm * 1 mm * mm voxels (Fig. 12). 
Noise in background and tissue was calculated to be on = 1.17 
and D , ~  = 2.78 (see white boxes). After three iterations with 
the diffusion function c1 and K = 5.0 noise was significantly 
suppressed ( u , ~  = 0.63 in tissue), while the low-contrast edges 
between gray- and white matter were enhanced. Fig. 12 (right) 
demonstrates the smoothing and edge enhancement capacity 
of the filtering as a preprocessing step for structural image 
processing. A simple local differentiation was applied to the 
original and the filtered images. This edge detection operation 
serves as a basic segmentation step for a contour-based image 
analysis. 

F. 3 - 0  Two-Ciiunnel Filtering of Dual-Echo SE Datu 

Spin-echo image data with thin slices, acquired with the 
half-Fourier technique are especially appropriate for the ap- 
plication of the 3-D 2-channel filtering, because both the 
structural correlation in 3-D space and the correlation among 
the two echoes support an efficient smoothing and enhance- 
ment (Fig. 13). To obtain optimal information about 3-D 
anatomical structures, the filtering was applied to 120 double 
echo contiguous slices of a spin echo acquisition (TR = 
4000 ms, TE = 30/80 ms) with nearly isotropic voxels of 
dimension 1.8 mm * 1 mm x 1 mm (interleaved acquisition, 
no gap). To speed up the measurement, a half-Fourier sampling 
was used. The decrease in the overall acquisition time by a 
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Fig. 11. MR angiogram (TR 50 ms, TE 5 ms, FOV 24.0 cm, slice thickness 1 mm, flip angle 80'): original slice (left), slice after 
3-D filtering (right), zoomed parts ( 2 . 0  of original and filtered slices (bottom left and right). 

Fig. 12. Three-dimensional SPGR (TR 35 ms, TE 5 ms, FOV 24.0 cm, slice thickness 2 mm, no gap): left: original slice (top), 
zoomed region ( 2.r ) (middle), edge detection (bottom); right: 3-D filtering (top), zoomed region (middle). edge detection (bottom). 

factor of two is counterbalanced by a decrease of signal to 
noise by d. 

Noise in the most homogeneous tissue region was reduced 
from on = 3.67 to on = 0.99 in the first and from 
on = 3.63 to crTt = 1.05 in the second echo, using three 
filter iterations with c1 and K = 7.3. The noise elimination is 
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illustrated by generating 2-D histograms (scatterplot) of dual 
echo pairs. Fig. 13 bottom left and bottom right demonstrate 
the significant noise reduction indicated by sharpened clusters. 
This result is important for a later segmentation of dual-echo 
images by statistical classification methods. Sharp clusters 
with only minimal overlap allow a clear discrimination of 



230 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 11. NO. 2 ,  JUNE 1992 

Fig. 1.3. Three-dimensional filtering of dual-echo SE image data (TR 
4000 ms. TE 30/80 ms, FOV 24.0 cm, slice thickness 1.8 mm, nogap): left: 
original first echo (top), second echo (middle), and scatterplot (bottom); right: 
filtered first echo (top), filtered second echo (middle) and scatterplot of filtered 
data (bottom). 

tissue categories based on multivariate pixel properties [lo], 
P21. 

IV. DISCUSSION 

In 1981 Wang and Vagnucci [13] recognized the need for 
locally adaptive nonlinear image data filtering and proposed an 
iterative scheme in which the weighting coefficients of a spatial 
averaging mask were the normalized gradient inverse between 
the center pixel and its neighbors, without inferring any a 
priori knowledge about image and noise statistics. Based on 
the observation that intensity differences (gradients) between 
neighboring pixel values across boundaries are much larger 
than those within regions, they proposed that the contribution 
of a neighboring pixel should be weighted inversely propor- 
tional to its intensity difference. Their choice of normalization, 
however, weakens the adaptive smoothing capacity signifi- 
cantly. The weight of the central pixel and therefore the sum 
of the neighboring weight coefficients, is fixed at 0.5. The 
inverse linear coupling of filter mask weights with the gradient 
magnitude does not prevent blurring. After performing a 
quantitative evaluation of their smoothing scheme, Wang and 
Vagnucci suggested smoothing an image to no more than 
five iterations to obtain an acceptable compromise between 
smoothing and blurring. 

Our filtering method reduces noise significantly while pre- 
serving important image structures. When it was applied to 
images with varying MR parameters, analysis clearly showed 
that the filtering of 0.5 NEX images achieves a noise level 
which is even lower than that of 4 NEX images, requiring an 
eight times longer acquisition. Filtered images of smaller NEX 
are very similar in appearing to unfiltered images with large 
NEX, especially when comparing region homogeneity and 
edge sharpness. Differences are mainly due to a lesser detail 
enhancing capacity of faster acquisitions and only secondarily 
to a loss by filtering. The sharp and clear images look 
somewhat unusual, but the similarities of the filtered images to 
4NEX acquisitions imply that noise does not necessarily have 
to be an unavoidable image component in MRI. 

The optimal filter parameters defining the diffusion func- 
tion and the number of iterations were selected by visually 
comparing different results. The evaluation of the results is 
further supported by the generation of difference images, line 
profiles, edge images and scatterplots. The main parameter K: 
depends on the noise and the strength of step edges to be 
kept. Nordstrom [ 5 ]  calls K: an edge enhancement threshold 
because K: is directly related to the gradient magnitude to be 
kept or smoothed. The mathematical treatment of the edge 
enhancement has shown that points with gradient magnitudes 
close to K: are either blurred or enhanced. In medical imaging, 
especially in MRI, low contrast edges are often significant. 
The selection of the parameter K is mainly based on the noise 
level and only secondly on the edge strength. We prefer to 
keep K as small as possible while sufficiently suppressing 
noise. If a reliable estimate of the noise can be made, e.g., 
by applying the estimation technique proposed in this paper, 
the parameter IC can be selected directly. A good choice was 
1.5 * crnose < K: < 2.0 * oIloiZc. If noise level is not known, 
a test series with different parameters must be generated and 
compared. Once selected, the parameter can be kept fixed for 
acquisitions taken under similar conditions. Several tests with 
diffusion functions c1 and c2 indicate that c1 possesses a much 
stronger edge enhancing capacity, while noise smoothing is 
comparable. 

A second parameter that must be controlled is the number of 
iterations. The iterated filtering process results in a sequence 
of diffused image functions, from which an optimal has to be 
selected. We prespecified the number of filter operations, as 
impressive improvements are already obtained after three to 
five iterations. The “biased anisotropic filtering” proposed by 
Nordstrom converges to a steady-state solution, requiring no 
stopping criteria. Our experiments have shown that with that 
method, smoothing efficiency is comparable, while complete 
convergence is obtained after approximately 50 iterations 
(integer calculations). 

The 2-D version of the filter is appropriate for process- 
ing single slices or series of slices with anisotropic voxel 
dimensions. The influence of neighboring nodes falls off with 
l / A s 2  where Ax is the distance between voxel centers. When 
processing series of slices, the decision whether to use 2-D 
or 3-D filtering is based on the voxel dimensions, the desired 
accuracy and computation time. 2-D filtering with its 3*3 mask 
is faster than 3-D filtering with 3 * 3 * 3 neighbors. In practical 
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applications we found it reasonable to apply 2-D filtering to 
voxels with a noncubical edge ratio of 1 : 1 : 3 and more. 

Three-dimensional filtering is useful with data sets of cubi- 
cal or nearly cubical voxel dimensions. The larger neighbor- 
hood results in a better noise reduction and in a maintenance 
of 3-D edge and line structures. Whenever several channels 
are acquired a multichannel version of the filter should be 
chosen. Assuming independent noise among the channels the 
choice between noise and image structures becomes more 
robust. 

The interactive selection of the parameter K: is still a 
disadvantage of the procedure. Future improvement should in- 
clude an automated selection of the optimal edge enhancement 
parameter. We plan to integrate the automated noise-estimation 
into the diffusion procedure. 

The analogy of anisotropic diffusion to iterated processing 
on a network structure implies a simple and efficient im- 
plementation on many types of computers. A 2-D iteration 
on 16 bit 256 by 256 slices requires 6.2 s, whereas for 
3-D iteration 11.9 s/slice are needed (SUN SPARCstation IPC, 
24 mbytes memory). This performance is achieved by using 
a look-up-table technique which precomputes corresponding 
gradient magnitude-flow values. The algorithm reduces to 
the calculation of differences of the neighboring node intensi- 
ties, to a table look up, and to a summation of the associated 
flow contributions. 

V. CONCLUSION 
Recent improvements in MRI techniques make it accessible 

for many new applications, but these advances do not always 
result in images of higher quality. High spatial resolution and 
high speed acquisitions can lead to image data of relatively 
poor quality. Methods usually applied to enhance noisy MR 
images clearly show that better image quality is often accom- 
panied by a decrease in spatial resolution or by a considerably 
longer acquisition time. 

The present paper indicates that the signal to noise ratio 
must not necessarily be the delimiting factor in applying 
special parameters or special pulse sequences in MRI because 
noisy images can be restored efficiently in a postprocess- 
ing stage. The spatial filtering process presented here is 
based on anisotropic diffusion. New extensions adapt it to 
the processing of multiple echoe and 3-D data, and allow 
the optimal filtering of arbitrary types of MR image data. 
The results clearly illustrate the efficient noise reduction in 
homogeneous regions. Object contours, boundaries between 
different tissues and small structures such as vessels are not 
only preserved, but even enhanced. The filtered images appear 
clearer and boundaries are much better defined, leading to 
an improved differentiation of adjacent regions of similar 
intensity characteristics. 

The filtering method described herein fulfills most of the cri- 
teria defined for improvement in SNR. Besides better smooth- 
ing and enhanced visualization characteristics, the potential 
advantages of the filtering in clinical routine applications 
include the following. 

We demonstrate with the enhancement of filtered half- 
Fourier images that the method could support an acqui- 
sition technique which might not otherwise be the first 
choice because of inadequate image quality. The reduced 
image quality of half-Fourier acquisition in comparison 
to 1 NEX acquisition is compensated for by the filtering, 
thus supporting the usage of that time-saving acquisition 
technique in combination with noise-filtering in future 
medical routine applications. The relevance of faster 
acquisitions in clinical routine is significant, because 
it reduces artefacts due to patient movement, allows 
an improved MR instrument throughput, and provides 
benefits to patients in terms of comfort. 
Filtering applied as a postprocessing procedure does 
not affect the acquisition process. The processing can 
be carried out on existing data for retrospective image 
enhancement, or image data can be processed at the time 
of the study. 
Image processing methods specifically adapted to the 
multidimensional and multispectral MR data can signif- 
icantly improve the analysis by extracting, analyzing, 
and visualizing the structural and functional properties of 
tissues. The anisotropic diffusion process proposed here is 
an important prerequisite of a segmentation process [lo] 
to extract brain (gray and white matter), and the CSF 
spaces from MR data with only minimal user interac- 
tion. This segmentation procedure was applied to image 
data depicting various diseases of the brain (Alzheimer’s 
disease, brain atrophy, normal pressure hydrocephalus, 
multiple sclerosis) in which quantitative morphometric 
and volumetric information, as well as spatial configu- 
ration or distribution of normal structures and/or lesions 
are essential [ll]. The experience with filtering as a pre- 
processing step allowed to improve the spatial resolution 
(i.e., reduce slice thickness to 3 mm) while maintaining 
sufficient signal to noise for visual evaluation as well as 
segmentation. 

We conclude that the filtering proposed here combines a 
highly efficient noise reduction and the ability to preserve and 
even enhance important image structures. The medical images 
discussed here fit the image model of piecewise slowly varying 
structures, supporting the assumptions made for applying the 
anisotropic diffusion method. 

Further studies will have to be undertaken to find the lower 
limits of input image quality to given satisfactory filtered 
results. Such an evaluation will be interesting in low- and 
mid-field MR imaging, where the problem of sufficient signal 
to noise is much more pronounced. 

The filtering of MR data as proposed here is part of the 
analysis protocol in a large NIH-study (NIH-NINDS-90-03) 
for investigation of MRI in multiple sclerosis (MS). The 
study includes over 1200 MR examinations acquired at the 
Brigham and Women’s hospital in Boston and comprises a 
careful validation and reliability analysis. After the two year 
study period, the large data-base will allow to conclude about 
the clinical utility and sufficiency of the proposed filtering 
technique, both for visual reporting and for computerized 
quantitative analysis. 
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APPENDIX 
CALCULATION OF INTEGRATION CONSTANT At  

The integration of partial differential equations is a problem 
of numerical mathematics that has been dealt with extensively 
(e.g., [4]). A number of methods of different degrees of 
complexity are available. We present here a simple derivation 
to facilitate intuitive appreciations. 

The integration constant At determines the iterative approx- 
imation of stability. There is no limitation for the lower bound 
of At. A small value results in a good approximation of the 
continuous case, but requires many iteration steps. The upper 
bound can be calculated using the discrete formulation of the 
diffusion process. 

I ( t  + At)  r2 I ( t )  + at * It 

i=l 
/ 71 \ 11 

= Io (1 - At cZ) + At cz I z .  (Al) 
2 = 1  2 = 1  

To achieve a monotonic variation of the node intensities the 
central weight must be larger than or equal to the weights of the 
neighboring elements. The case of maximum blurring is con- 
sidered. Setting K: to infinity results in diffusion coefficients 
equal to one, independent of the intensity differences. 

The parameter n equals the number of neighboring nodes 
between which a flow takes place. For diagonal elements the 
larger distance must be taken into account (factor l/A:c*). 
Contributions from diagonal elements within planes reduce 
to 0.5, whereas corners of cubical neighborhoods amount to 
0.33. Table I1 lists the integration constants for different kinds 
of neighborhoods. Stability analysis according to [4] yields 
virtually identical maximum time steps. 
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