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Correspondence 

A Spatial Thresholding Method for Image 
Segmentation 

K. V .  MARDIA A N D  T .  J .  HAINSWORTH 

Abstract-There has been recent interest in the segmentation of im- 
ages by thresholding. We present several model based algorithms for 
threshold selection. We concentrate on the important two population 
univariate case when an image contains an object and background. 
However the methods are applicable to multispectral k-population im- 
ages. We show how the main ideas behind two important nonspatial 
thresholding algorithms follow from classical discriminant analysis. We 
then give various new thresholding algorithms which make use of avail- 
able IocaVspatial information. We consider one FLIR image and two 
artificial examples. A comparative study indicates that a new “alter- 
nating mean thresholding and median filtering” algorithm provides an 
acceptable method when the image is relatively highly contaminated. 
This method seems to depend less on initial values. 

Zndex Terms-Classification, image segmentation, iterated condi- 
tional modes, median filtering, shape analysis, spatial cluster analysis, 
thresholding algorithms. 

I. INTRODUCTION 
We will consider the problem of image segmentation by thresh- 

olding. This problem and its importance were fully described re- 
cently in [l] ,  [2], and [3]. Our main interest is with the k = 2 
population case which is related to object identification. However, 
we shall also consider the extension to the general k-population 
problem. 

We first show that the threshold value in the segmentation al- 
gorithms of [ l ]  and [2] can be deduced from the well-known sta- 
tistical discriminant rule. Unlike [3], their rule is not spatial, i.e., 
it does not use contextual information. We give a spatial allocation 
rule based on the work of [4] and [ 5 ] .  This is utilized to give a new 
thresholding algorithm. We also consider the iterated conditional 
modes (ICM) method [6]. 

Section I1 describes the nonspatial allocation rule, and shows 
how the allocation rules of [ I ]  and [2] are particular cases. We 
summarize their iterative thresholding method in Section 111. In 
Section IV we give a spatial allocation rule which takes into ac- 
count the spatial relationship between neighboring pixels and de- 
scribe the modified iterative algorithms in Section V. In Section VI 
we describe ICM and its implementation. The methods are com- 
pared using synthetic images (following [3]) and one “real” FLIR 
(forward looking infrared) image. We conclude with a discussion 
of the methods in Section VIII. 

Our method follows naturally from a model introduced in Sec- 
tion 11. The method in [3] is not discussed here since it is not model 
orientated. Also our method applies to multispectral data, i.e., color 
images. 

In all the algorithms considered here, we do not require any prior 
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information of the statistical parameters, so the segmentation 
method can clearly be described as a “spatial clustering method” 
rather than a “spatial discrimination method.” 

11. NONSPATIAL BAYES? THRESHOLDING 
Suppose that an image is known to contain k populations II,, i 

= 1, . . .  , k .  Let p ,  be the prior probability associated with pop- 
ulation II,, i = 1, . * , k ,  respectively. Let Z be any gray-level 
at a pixel on a lattice. If L, ( Z )  is the likelihood under II,, i = 1, 

, k ,  then the Bayes’ allocation rule simply assigns an observed 
gray-level Z to that population II, which maximizes the likelihood 
. . .  

PJL, (Z). 

Assuming II,: Z - N (  p,, af ), i.e., Gaussian with mean p, and 
variance o f ,  i = 1, . . . , k ,  this just requires maximization of the 
score 

s, = logp, - f(Z - J/of  - 4 log (27raf). 

This can be reformulated in terms of a set of threshold values. For 
example, if ai = a, i = 1, . . . , k and p ,  < p, < . . . < p k ,  then 
the thresholding algorithm is: 

1) Evaluate the threshold values, 

i, j = 1, . . * , k ;  i < j .  

2) Set i = 1. 
For j = 2 to k :  if Z > t,, then set i = j .  
3) Assign Z to II, . 
This algorithm requires ( k  - 1 ) comparisons for each pixel of 

the image; this number can be further reduced by, for example, 
using a “split and merge” algorithm. The bulk of the computation, 
i.e., evaluation of the thresholds, is performed once for the entire 
image. 

The case of k = 2 populations is important in practice, e.g., II,: 
background and II,: targets. The thresholds, which will be used 
later on, simplify for this case as follows. 

If a, = a = a2, then the Bayes’ allocation rule yields the single 
threshold value 

If a, # a2 then the Bayes’ allocation rule requires two threshold 
values, t ,  and t -  given by 

0, 0 2  
t ,  = (a: - a:) *- (a: - a:) {(PI  - P d 2  

I L Z d  - h a :  

In this case the allocation rule is: assign Z to II, if t +  < Z < t - ,  
otherwise assign Z to II,. 

In practice, the population parameters pi,  ai, pi, i = 1, . . . , k 
are all unknown and must be estimated by some method, e.g., max- 
imum likelihood based on some provisional allocation. 

In the k = 2 population case, where II, is background and 112 is 
a target, it is common to assume a, = a2. However, in practice we 
expect the background to be more uniform than the target which 
may contain more variable gray-level information; thus, a, < a, 
would be more appropriate. 

0162-8828/88/1100-0919$01.00 0 1988 IEEE 
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111. ITERATIVE THRESHOLD SELECTION METHODS 
We now consider iterative thresholding methods [I] and [2] for 

the segmentation of images containing two populations. 

A .  Nonspatial Thresholding (Ridler and Calvard) 
The algorithm is as follows: 
1 )  Select some initial estimate of the threshold t ,  e.g., we could 

use the average gray-level for the whole image. 
2) Segment the image into two regions II, and 112 using t :  assign 

all pixels with gray-level less than t to II,, and all other pixels to 

3 )  Calculate the mean gray-levels Z, and Z 2 ,  and the associated 
numbers of pixels n ,  and n2,  within the regions II, and II,, respec- 
tively. 

n2. 

4) Calculate the new threshold value 

t = f(iI + 2 2 ) .  (3.1) 

5) Repeat steps 2), 3), and 4) until convergence is achieved, 
i.e., the values remain stable. 

It has been proved that the method of Ridler and Calvard always 
terminates; see [9]. However, different starting values can lead to 
different solutions for the threshold value for this method. Kittler 
and Illingworth [ 101 propose a method for selecting a solution from 
the multiple solutions. Methods of obtaining a globally optimum 
solution have been considered; see [ 111. It is known that the esti- 
mates of the means are inconsistent, but that the threshold is un- 
biased. 

It is important to note that the main step is the use of the allo- 
cation rule (2.2) (withp, = p 2 )  in step 4). 

B. Lloyd’s Method 
Lloyd [2] considered a modification of the iterative threshold 

selection method of Ridler and Calvard [ 1 1 .  This replaced the cal- 
culation of the new threshold in step 4) of Section 111-A with 

Here U ;  = U :  = u 2 .  

rule (2.4), estimating the prior probabilities by 
It is important to note that this is simply the Bayes’ allocation 

p ,  = n , / c  n,, i = 1 ,2 .  ( 3 . 3 )  

These prior probabilities take into account the relative sizes of 
background and objects and will tend to allow more accurate 
thresholding of an image in which the object (or background) is 
relatively small. 

It is possible to estimate U from the data. However, the estimated 
value of U may cause the iteration to assign all pixels to either II, 
or I12. To prevent this, an upper limit 

(see [2] for details) is used to estimate U in ( 3 . 2 ) .  
Lloyd [2] found that this modified iterative thresholding method 

converges to a satisfactory threshold more often than the methods 
of either Ridler and Calvard [ 11 or a slightly more complex method 
(see [17]). However, the output still suffers from a great deal of 
noise, and it is expected that this might be reduced if we use the 
spatial information available. For a general discussion of this ratio- 
nale in image processing see [3] and [12] and the references therein. 

IV. SPATIAL THRESHOLDINC 
A .  Introduction 

In the previous sections we ignored the location of each pixel. 
Let us assume that x,, i = 1 ,  . . . , n (x, E R,) is the coordinate 
of a pixel on a regular lattice labelled in some systematic way, e.g., 
row by row. 

Following [5], we assume that for population II,, i = 1 ,  . . . , 
k ,  { Z ( x )  } is an isotropic Gaussian process with 

E [ Z ( x ) ]  = P l , C o v [ Z ( x ) > Z ( Y ) ]  = & ( I x - Y J ) >  (4.1) 
where p ( h )  is the isotropic correlation function with p (0)  = 1 .  

Further, we assume local spatial continuity [13] in the sense that 
for a small neighborhood (window), these assumptions will hold at 
x with high probability. The “dirty pictures” of [6] satisfy such a 
spatial model. 

Suppose that we wish to assign the observation Z, = Z(x,) to 
one of the populations II,, i = 1, . . * , k .  Let {x,}, p = 1 ,  
. . .  , s be some neighborhood of xo, with Zp = Z(x,), p = 1 ,  
. . .  , s, the observed values at these points. Consider some linear 
combination G, of the elements of this neighborhood, 

where yp, p = 0 ,  . . . , s, are the respective weights attached to 
Z p , p  = 0, . . . , s. Write y = (yo, y,, . . . , ys)’. 

From the well-known properties of linear combinations of 
Gaussian random variables, we have that under II,, i = 1 ,  . . . , 
k ,  and spatial continuity G is Gaussian with 

p: = v 2 p l ,  U:’ = p 2 u f ,  i = 1 ,  . . . , k 

v 2  = l ’ y ,  P = ( p {  1 x, - x y l } ) ,  p 2  = y’Py. 

(4.3) 

(4.4) 

where 

Note that for general y, we could have l ‘ y  < 0 and so u 2  would 
be negative. However, in this paper2 we shall only consider v 2  > 
0. Thus we have II,: G - N (  p:, U: ), i = 1, , k .  If the prior 
probability of II, is p , ,  i = 1, . . . , k respectively, then we may 
simply write down the allocation rule and associated threshold 
value(s) for G using the results of Section 11. (Note that (4.3) gives: 
U, = U, e U: = U* ) For example, in the k = 2 population case 
we have the following results. 

1 )  If uI  = u2 = U say, then from (2.2) the spatial threshold value 
is 

I .  ’ 

which in the case of equal prior probabilities ( p I  = f = p 2 ) ,  re- 
duces to 

t* = f v2( p, + p 2 ) .  (4.6) 

If pI < p 2  then the spatial allocation rule is: assign Zo to II, if G 
< t*, otherwise assign Zo to I12. 

2) If uI # u2 then from (2.3), the spatial threshold values are: 

112 
+ 2P2(d - 4) 1% [ ( P 2 ~ I ) / ( P I U d I }  . (4.7) 

If U ,  < 9, then the spatial allocation rule is: assign Z,  to II, if 
t*, < G < t ? ,  otherwise assign Zo to I12. 

These results are true for any choice of the weights y.  

B. Spatial Thresholding 

Section IV-A are given by 
A set of weights y, which follow naturally from the model of 

y = P-ll .  
For details, see [5]. 

Thus, we have p 2  = v 2  so that 

Thus, we may write down the spatial threshold values by substi- 
tuting = v into the results of Sections I1 and IV. For example, 
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in the k = 2 population case, if U ,  = u2 = U ,  then the spatial 
threshold is 

which reduces to (4.6) in the case of equal prior probabilities. If 
p1 < p2 then the spatial allocation rule is: assign Zo to II, if G < 
t:;  otherwise assign Z,, to I12. 

1) A Second Order Window: In practice we have used a 3 X 3 
window centred on Zo, with points arranged as shown in Fig. 1. In 
this case (4.8) yields (see [5]): 

yo = 1 - 4PA - 46B; 

y, = B , j  = 5, . . .  , 8; 

yi = A, i = 1, . . . , 4; 

(4.11) 

where 

A = ( U  - vw)/{4(1 - W ~ ) ~ / ~ ( ( Y  - P 2 ) ' / ' } ;  
B = ( U  - uw)/{4(1 - ~ ~ ) ' / ~ ( y  - 6 2 )  1 /2  } 

U = (1 - P) / (a  - p 2 p 2 ;  U = (1 - S) / (y  - 6 y 2 ;  

w = ( E  - @&,/{ (a  - P 2 ) ( y  - 6 2 ) }  

with 

I /2  
; 

and 

a = i { l  + 2 p ( A ) + p ( 2 ) } ;  P = p ( l ) ;  

y = a {  1 + 2p(2) + p ( 2 f i ) ) ;  

6 = p (  A); E = + { p(1)  + p (  A ) } .  
Thus, the spatial allocation variable is simply 

G = (1 - 4PA - 46B) Zo + 4AZe + 4BZf (4. 

w h e r e Z , = + ( Z ,  + Z 2 + Z , + Z , ) a n d Z f = : ( Z 5 + Z 6 + Z  
Z 8 ) ,  and the size parameter is 

v 2  = 1 + 4 A ( 1  - p )  + 4B(1 - 6 ) .  (4. 

Note that no account has been taken of the boundary between 
populations nor the boundary at the edge of the image. However, 
the method can be modified. 

The method requires the estimation of the quantities p ( 1 ), 
p (  A), p ( 2 ) ,  p ( 2 & ) ,  and p (  &). This can be done using the 
empirical estimate of the semivariogram y ( h )  in the usual way; 
see for example [14]. The method is applicable if there is nonsta- 
tionarity in the means. If the data is otherwise nonstationary, the 
method is not applicable. 

C. Local Mean Thresholding 
A computationally simple method is to place equal weight on 

each element of the neighborhood of xo, i.e., yp = 1 / ( s  + l ) ,  p 
= 0, 1, . . . , s, and v 2  = 1. In this case G is now the mean gray- 
level in the neighborhood of xo. The appropriate threshold values 
may be obtained using the results of Sections I1 and IV. In partic- 
ular, fork  = 2 populations with U ,  = u2 = U we have 

where 

a2 = ( l ' P l ) u 2 / ( s  + l )2 .  (4.15) 

Equations (4.15) and (2.2) are the same when pI = p 2 .  Section V 
presents an adaptation of the iterative method of Ridler and Calvard 
[ 11 for use in spatial thresholding when the population parameters 
are unknown. 

z5 z 1  '8 

Z 
'2 0 '4 

'6 z 3  '1 

Fig. 1. Arrangement of points in a 3 X 3 window. 

D. Extension 
Note that the methods presented in this paper can be readily 

modified to deal with multivariate data such as multispectral data 
from color images. For example, we might consider { Z ( x )  } where 
Z E 9, and the components of Z(x )  are the red, green, and blue 
intensity levels at point x .  Assuming k = 2 populations, with U,: 
Z - N 3 (  p,, A),  i = 1, 2, the multivariate extension of (4.2) is 

5 

G = c y p z p .  
p = o  

(4.16) 

For the spatial thresholding method, (4.10) with pI = p z  becomes 

t* = + 2 ( C L I  + p2). (4.17) 

where y and v 2  are defined as before. 

erwise assign Zo to 112, where 
The allocation rule is: assign Zo to II, if w' ( G  - t*) > 0 oth- 

(4.18) w = A-' (  pI - p2). 

V .  ITERATIVE SPATIAL THRESHOLDING A N D  POST SMOOTHING 
We now consider an adaptation of the iterative method of Ridler 

and Calvard [ l ] ,  described in Section 111, which makes use of the 
spatial threshold values of Section IV. 

A. Spatial Thresholding Algorithm 

( U ,  = U ,  i = 1, . . . , k;  pl < p 2  < . . . < pk) 
i) Segment the image into k regions, II,, i = 1, . . . , k using 

ii) Calculate the respective mean gray-level Z, and the associated 

iii) Obtain estimates of the spatial parameters: 

some initial threshold values, e.g., based on sample quantiles. 

number of pixels n, for each region II,, i = 1, . . . , k .  

a) Subtract the mean Z, from the observed gray-level at each 

b) Evaluate the empirical semivariogram y ( h )  for the modi- 
pixel in region II,, i = I ,  . . . , k, respectively: 

fied data set, and then estimate j3 ( h )  using the relation 

(Note that y ( h )  is less sensitive to trend than b ( h ) . )  

3 window). 
c) Hence, evaluate y and v 2  (from (4.12) and (4.14) for a 3 x 

iv) Calculate the spatial threshold values: 

i , j =  l ; . . k , i < j .  

v) 
a) Note that the edge pixels do not have 8 neighbors in the 3 

X 3 window. In the present case, the missing pixels are given some 
suitable gray-level value. Since we might expect the pixels outside 
the image to be background we will set the missing edge pixels to 
the current estimate of the background mean, i.e., to Z , .  

b) For each point Zo in the image evaluate the quantity 
5 
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(where Zo, Z,, . . . , Z 8  are the observed gray-levels at points in 
the neighborhood of Z o ) .  Set i = 1. F o r j  = 2 to k :  if G < 
then set i = j .  Allocate Zo to II,. 

b) Repeat steps ii)-vi) until the solution is stable. 
Note that in step iii) the empirical semivariogram is used directly 

to evaluate the spatial parameters. An improvement in the method 
may be achieved if an appropriate model, e.g., spherical scheme 
is fitted before parameter estimation. 

Instead of v)-a) where the boundary pixels are replaced by a 
suitable value, it will be worthwhile to use in v)-b), the modified 
weights calculated from (4.9) for the reduced window. 

The final thresholded image may still contain noise. Hence, we 
will smooth the image using median filtering (see Section V-C). 

Note that if we omit step iii) and use yo = 1 and y, = 0, p # 
0, then this algorithm gives the generalization of [I]  and [2] to k-  
populations. 

B.  Local Mean Thresholding Algorithm 
We may use the algorithm of Section V-A with step iii) omitted, 

and using y, = 1 / ( s  + l ) ,  p = 0, * . . , s and v 2  = 1. Note that 
for v 2  = 1, (3.4) and (4.10) give C * 2  = C 2 .  Estimating the prior 
probabilities as in (3.3), we replace the thresholds in iv) with 

A modified window is used at the edges, i.e., missing pixels are 
not estimated. 

C. Post-Smoothing 
The iterative thresholding methods described in Sections 111-A, 

111-B, V-A, and V-B have been found to produce final classifica- 
tions which suffer, to varying degrees, from “blobs” of noise. It 
is desirable to remove this noise from the thresholded image. This 
can be achieved to a certain extent by repeated use of some smooth- 
ing operation (see for example, [15]). 

For general k-population images we shall use median filtering: 
this reclassifies each pixel as belonging to the median of the clas- 
sifications within a 3 X 3 neighborhood of the pixel. For zero-one 
binary ( k  = 2 )  images, this has the same effect as either 1) majority 
voting or 2) mean filtering followed by thresholding at i .  Median 
filtering has the desirable property that it does not blur “edges.” 

D. Alternating Mean Thresholding and Median Filtering 
It has been found that it is desirable to “clean” a thresholded 

image by repeated application of median postsmoothing (using a 3 
X 3 window) of the final classification map. Thus, these methods 
in effect consist of two processes. 

We might expect an improvement in the mean thresholding 
method if we were to combine a cycle from each process into a 
single step of a new process. Thus, at each cycle of the new iter- 
ative procedure there are two subcycles: 

i) a single subcycle of local mean thresholding (Section IV-C). 
ii) a single subcycle of median filtering (Section V-C). 
We shall call this new iterative process the Alternating Mean 

We may represent the process pictorially as shown in Fig. 2. 
We now give some rationale behind steps i) and ii). In step i), 

an estimate { Y } of the classification map { Y } is obtained as fol- 
lows. For each pixel xo, let 6xo be some neighborhood of xo (e.g., 
a 3 X 3 window, as in our case). Further, let 

Thresholding and Median Filtering (AMT-MF) algorithm. 

/ c  z) = c Z ( x )  
XES,, res., 

Then each pixel xo is allocated to population IIpa such that the con- 
ditional probability density function 

is maximized; see Section V-B. Note that z o  is replaced by G, 
defined in (4.12), for the spatial case. 

F~OVISIONAL LABELLING 

Select  5088 1nit>a1 Cia55,flCatiOn 

e . g .  by thresholding at a sultable 

value 
‘4 
I- 

1 
ORIGINPL DATA 

Given the prorisional labelling. 

evaluate estimates of the model -- I , t i l  , 
L_ parameters I 

SMOOTH 

I 

! (U) 

-r 

Smooth the dara values by taking 
the mean inside a 3 x 3 window 

centred on each p i x e l .  

Threshold the imaqe to Obtaln a 

set of labels 

Smooth the l a b e l s  Dy median filtering 

t o  Obtaln a Pew set of m. 

t 
REPE4T UNTIL CONVERGENCE. 

Fig. 2. AMT-MF algorithm. 

In step ii), a new classification map { 9 )  is then obtained by 
assigning pixel xo to that population IIpo  such that the conditional 
probability density function 

is maximized. This simply a s s i p s  xo to the population correspond- 
ing to the median of the set { Y, : xI E 6,, }. In the k = 2 population 
case, this has the same effect as a majority vote rule, cf. the prior 
of [6]. Note that there are no restrictions on p (other than p > 0 )  
for this method, since steps i) and ii) are performed in alternation 
and we are not, therefore, looking for a tradeoff between them (cf. 
ICM method; see Section VI below). 

Note that this method is similar in principle to an iterative pre- 
smoothing method used in [15]. Their class probabilities are not 
based on a spatial model and they use an ad hoc selective mean 
filter in step ii). Note that our method uses the original observations 
at each iteration, which is more in the spirit of [6]. 

For the purpose of comparison we shall also consider the “par- 
tially spatial” Alternating Nonspatial Thresholding and Median 
Filtering (ANST-MF) method, which uses a subcycle of nonspatial 
thresholding (Section 11) and a subcycle of median filtering at each 
iteration. 

1) AMT-MF Algorithm: We may adapt algorithm 5.2 to per- 
form AMF-MF: insert the following between steps v) and vi): 

v)’ smooth the thresholded image by assigning each pixel to the 
median of the classifications within a 3 X 3 window centred on the 
pixel. 

VI. ITERATED CONDITIONAL MODES (ICM) METHOD 
A. The Method 

In the simplest form, the method iteratively minimizes ([6]) 
1 

S = ~ ( Z o - p , ) L - ~ ~ , + l o g u , ,  i = l ; . . , k ,  (6.1) 
I 2u, 

where U, is the number of neighbors in a 3 X 3 window allocated 
to II, at an iteration. Note that this is not the same as used in 
Section IV. 

For the k = 2 population case, we have the following results. 
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.oca1 mean 
l e q u a l  pr1orsi 

ie lmted P T ~ O ~ S I  

j p a t l a l  

.oca1 mean 

i) If aI = a2 = U say, then the boundary of the decision rule is 
given by SI = S 2 ,  which gives 

z = L( 2 Pi + P 2 )  + Pu’(u2 - U l ) / ( P I  - P 2 ) .  

B = zo + Pu2(u1 - U Z ) / ( P l  - P 2 ) >  

t 3  = + ( P I  + P 2 ) .  

(6.2) 

(6.3) 

(6.4) 

Thus, we define the decision variable 

and the threshold value 

If pl < p 2 ,  then the allocation rule is: assign Z, to II, if B < t j ,  
otherwise assign Zo to I12. 

ii) If a1 # a2, then the boundary SI = S2 has two solutions for 
z 

0.48 
10.11 

1.2 
1a.21 

0.46 
10.11 

Note that the RHS varies with each pixel xo, since it depends on 
the counts u l ,  u2. Hence, the RHS is not a threshold in the usual 
sense. It is not clear whether a thresholding rule based on (6.5) will 
be computationally more efficient than the comparison of the scores 
(6.1) at each pixel, especially for k > 2 populations. However, i t  
seems likely that fork = 2, a1 # a2, the latter will be better than 
the former. 

B. Algorithm (al = a, i = 1, . . . , k;  pI < . . . < pk) 
The thresholding algorithm of Section V-A can be modified to 

use the local reconstruction method considered in Section VI-A. 
Delete steps iii)-b), iii)-c), iv), and v)-b), and use in their place the 
following: 

iii)-b)’ Evaluate the variance G 2 ,  of the modified data set. 
iv)’ Evaluate the threshold values t7  

v)-b)’ For each pixel xo in the image do the following: 

= (Z,  + il ), i ,  j = I, 
. . . , k ,  i < j .  

Set i = 1. 
For j = 2 to k :  
I fZo + @e2 (U, - u , ) / ( Z ,  - 
Allocate xo to II,. 

> t 3 , 1 , 1 ,  set i = j :  nextj. 

The value of 6 is chosen by the user. Setting = 0 gives the 
nonspatial method [I] ,  whereas letting --* 03 gives a majority- 
vote rule. In practice, we choose a value between these extremes. 
A value of @ = 1.5 was found to work well. 

VII. COMPARATIVE STUDY OF THE METHODS 
We now present several examples of the application of the 

thresholding methods considered earlier. In the first two examples, 
the “naive error” is that observed under the “naive rule,” namely, 
the noniterative discriminant rule based on population parameters. 
This rule is used to provide an indication of the level of noise in 
the images. 

Example I 
Following [3], we consider a 32 X 32 synthetic set image con- 

sisting of two populations, II,: background and 112: a single cir- 
cular disk with respective gray-levels pl = 100 and p 2  = 120. The 
area of the disk (253 pixels) is approximately one quarter of the 
total area of the image. Fig. 3(a) shows the “pure” image; the 
shape of the disc has been distorted to some extent in the process 
of discretization. We consider 25 simulations obtained by super- 
imposing independent Gaussian N ( 0 ,  a’ )  noise for each value of 
U = 2.5, 5 ,  10, 15 , 20, and 30 respectively. These values of a 
yield average percentage misclassifications of 0.004, 1.8, 14.2, 
23.9, 29.7, and 36.0, respectively using the “naive rule.” Tables 
I and I1 show the mean percentage misclassification errors (and 
associated standard deviations) for various thresholding methods 

(a) (b) 

Fig. 3. (a) “Pure” 32 X 32 image containing k = 2 populations. (b) Im- 
age of Fig. 3(a) corrupted by N ( 0 ,  400) noise. 

TABLE I 
MEAN PERCENTAGE MISCLASSIFICATIONS (WITH ASSOCIATED S T A N D A R D  

DEVIATIONS S H O W N  IN B R A C K E T S )  FOR V A R I O U S  THRESHOLDING METHODS 
AS APPLIED TO 25 SYNTHETIC IMAGES OF k = 2 POPULATIONS WITH 

RESPECTIVE MEANS pLI = 100 A N D  p2 = 120, W H I C H  HAVE BEEN 

WITH U = 2.3,  5, 10, 15, A N D  20. I N  EACH C A S E  THE INITIAL THRESHOLD 
CORRUPTED BY SUPERIMPOSING INDEPENDENT GAUSSIAN N (  0, U’) NOISE 

to = 110 Is U S E D .  7 lal”e :‘-cor 10 .021  10.41 1 1 . 1 1  1 1 . 3 1  29.6 1 1 . 2 1  2 0  ( 1 . 4 1  

ia.41 11.91 1 1 . 6 1  12 .01  12 .11  

10.04) 10.51 1 1 . 4 1  1 2 . 2 6 1  1 2 . 7 1  1 3 . 2 1  

19.2 29 .2  34.4 39.9 ? i d l e r  a n d  
C a l v a r d  

. l a y d  0 .02  14 .5  25.48 3 2 . 3  38.6 I 

4NST-MF 

RMT-MF 

0 .39  
io1 

a . 4 7  
10.11 

0 . 7 1  1 .9  4.6 1 0 . 9  22 .8  
10 .21  10.3) 10.91 1 2 . 4 1  1 3 . 3 1  

1 0 . 3 1  10.51 10.61 11.01 1 4 . 3 1  

0 .68  1.8 4.4 9.8 2a .7  
10 .2 )  1 0 . 4 1  io.?) 1 1 . 9 )  13.51 

10.21 1 a . 7 1  ( 1 . 5 1  13 .21  14.61 

a .70  1 .6  2 . 7  4.9 11.0 
i a . 2 1  10.41 1 0 . 5 1  11.01 1 2 . 4 1  

0.1  1.0 2.2 3.7 7.5 
ia.11 10.51 10 .51  11 .21  12 .31  

1 .6  2.4 4 . 3  7 .9  17 .9  

0.5 2.6 8 . 4  16 .4  2 6 . 1  

TABLE I1 

DEVIATIONS SHOWN I N  B R A C K E T S )  FOR VARIOUS THRESHOLDING METHODS 

RESPECTIVE MEANS p ,  = 100 AND p2 = 120, WHICH HAVE BEEN 
CORRUPTED BY SUPERIMPOSING INDEPENDENT GAUSSIAN N (  0, U * )  NOISE 

W I T H  U = 2.5,  5 , l O .  15, AND 20. IN EACH CASE THE INITIAL THRESHOLD 
VALUE Is to = 2, THE AVERAGE GRAY-LEVEL OF THE WHOLE IMAGE 

MEAN PERCENTAGE MISCLASSIFICATIONS (WITH ASSOCIATED S T A N D A R D  

AS APPLIED T O  25 SYNTHETIC IMAGES O F  k = 2 POPULATIONS WITH 

a 
lal”e 
:rror 
? i d l e r  and 

C a l v a r d  

L l o y d  
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l e q u a l  p r l o r s l  
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0.48 0.8 1.9 4.6 1 1 . 2  2 3 . 5  
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0.4 0.5 2.8 10 .4  18 .7  28 .0  

0 .47  0.7 1 . 6  2.7 4.9 11.2 
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0 a.1 1 .2  4.8 10.5 20 .4  
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Fig. 4 .  Image of Fig. 3(b) thresholded using the following methods: (a) 
nonspatial thresholding (Ridler and Calvard), (b) nonspatial thresholding 
(Lloyd), (c) local mean (equal priors), (d) local mean (estimated priors), 
(e) spatial thresholding (Section V-A), ( f )  ICM (6  = 1.5,  fixed), (8) 
ANST-MF, and (h) AMT-MF. 

using the initial threshold values to = ( p ,  + p 2 )  = 110 and to = 
2 (the average gray-level of the full image), respectively. For il- 
lustrative purposes, we also include results for one further simu- 
lated image; the noisy image, with naive error 28.9 percent (gen- 
erated using u = 20), is shown in Fig. 3(b). The results of applying 
various thresholding methods to the image in Fig. 3(b) are shown 
in Figs. 4(a)-(h). 

All the thresholding methods are, to some extent, dependent on 
starting values. However, Besag’s ICM (0  = 1.5, fixed) seems to 
be critically dependent on initial values: a “good” initial threshold 
yields excellent results whereas a “poor” initial threshold yields 

Fig. 5 .  (a)-(h) show the respective images of Fig. 4 after three iterations 
of median postsmoothing. 

disappointing results. This effect can be reduced slightly if we make 
an assumption of the fom-“all pixels outside the image are back- 
ground pixels.” However, the error is still greatly affected by the 
starting values and the latter assumption is not, in general, appro- 
priate. For “poor” initial values the basic spatial methods (i.e., 
local mean, spatial) are roughly as effective as ICM-particularly 
for high U .  However, the “best” resultcon the whole are obtained 
by AMT-MF; in particular, for to = Z and U > 10 the results 
obtained by AMT-MF have less than half the error rate of ICM. 
AMT-MF seems to be less dependent on starting values than the 
other methods. 

There is very little difference between the performance of meth- 
ods using equal priors and Lloyd’s modification, respectively. It 
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(a) (b) 
F i g .  6. (a) “Pure” 32 X 32 i m a g e  c o n t a i n i n g  k = 3 p o p u l a t i o n s .  (b) Im- 

age of (a) cormpted by N ( 0 ,  100) n o i s e .  

remains to be seen whether this is the case with a relatively small 
object (or background). 

Note that both nonspatial methods suffer greatly from noise and 
the object appears bloated; see Figs. 4(a) and 4(b). These methods, 
as expected, perform best when the image is relatively uncontam- 
inated, but are wholly unsuitable when the image is noisy. They 
converge in around 4 to 5 iterations to a solution. 

The spatial methods of Section IV produced a thresholded image 
of much better quality than did the nonspatial methods; see Figs. 
4(c), 4(d), and 4(e). The thresholded images still suffer, to a lesser 
extent, from noise. The spatial method produces “better” results 
than the local mean method (equal priors) at the expense of in- 
creased computational burden. After postsmoothing these methods 
give very similar results. 

ICM ( @  = 1.5, fixed) produced the lowest misclassification er- 
rors, over the range of values for U considered, using the initial 
threshold to = 110. However, AMT-EF produced “similar” re- 
sults. When the starting value, to = 2, was used, ICM produced 
disappointing results with high variability for relatively high U. 

ICM may not converge to a unique solution. For a majority of 
the simulations ICM lead to two solutions, but the difference be- 
tween solutions is small. 

The AMT-MF method performs most “reliably” of all the 
methods considered here. It has a relatively small error variance 
and is not affected to a significant level by change of starting val- 
ues. The drawback of the method is that boundaries tend to be 
smoothed and fine detail lost; see also example 2. 

Example 2 
Our main interest is with the k = 2 population case. However, 

we now consider the application of the various methods described 
in this paper to a synthetic test image consisting of k = 3 popula- 
tions, IT, : background, IT,: circle (partially obscured) and IT3: 
square, with respective gray-levels p1 = 100, p2 = 120, and p3 = 
140. Fig. 6(a) shows the “pure” image. We consider 25 simula- 
tions obtained by adding independent Gaussian N ( 0 ,  u2) noise for 
each of the following values U = 2.5, 5, 10, 15, and 20, respec- 
tively. These values of U give average percentage misclassifications 
0.02, 2.7, 18.8, 30.5, and 37.4 respectively under the “naive 
rule.” Fig. 6(b) shows a particular “noisy” image with naive error 
20.6 percent (obtained using U = 10). Tables I11 and IV show the 
mean error rates (and associated standard deviations) for various 
thresholding methods using initial values based on the population 
parameters and initial values based on quantiles respectively. For 
illustrative purposes, Figs. 7(a)-(h) show the results of applying 
the various thresholding methods to the image shown in Fig. 6(b). 

The nonspatial methods [see Figs. 7(a), (b)] produce their best 
results when U is “low,” but are totally unacceptable for “high” 
U. The classified images have errors distributed “randomly” 
throughout the image, although the use of postsmoothing would 
confine most errors to interpopulation boundaries. The classifica- 
tion errors for methods utilizing locallspatial information occur 
mainly at interpopulation boundaries where the assumption of spa- 

TABLE Ill 
MEAN PERCENTAGE MISCLASSIFICATIONS (WITH ASSOCIATED STANDARD 

DEVIATIONS SHOWN IN BRACKETS) FOR VARIOUS THRESHOLDING METHODS 
AS APPLIED TO 25 SYNTHETIC IMAGES OF k = 3 POPULATIONS WITH 

RESPECTIVE MEANS p ,  = 1 0 0  AND p, = 1 2 0 ,  AND p = 1 4 0 ,  WHICH HAVE 
BEEN CORRUPTED BY SUPERIMPOSING GAUSSIAN N (  0, 0’) NOISE WITH U = 

2 . 5 ,  5, 1 0 ,  1 5 ,  AND 20. IN EACH CASE THE INITIAL THRESHOLDS ARE 
BASED ON THE POPULATION PARAMETERS, i . e . ,  t,, = ( p, + pj ), i ,  J = 1 ,  

. . . ,  3.  

0 
Naive 
Error 

Ridler  and 
Calvard 

Lloyd 

M a l  !rea” 
(equal 
prmrS.1 

Local mean 
( e s t m t e d  

p r m r s 1  

Spatla1 

ANST-Mf’ 

MT-MF 

ICMlB=l. 51 

2 . 5  5 10 15 20 

10.021 10.51 10.91 10.91 11.41 
18.8 30 .5  37.4 0 ,004  2 . 6  

0 2 . 7  21.4 35 .0  42.9 
I01 ( 0 . 4 1  ( 2 . 0 1  11.81 ( 1 . 8 )  

0.004 2 . 6  20.0 34.6  4 3 . 3  
10.021 (0 .31  (1.41 12.41 ( 1 . 9 1  

1.6  8 . 0  9 .1  14.1 25.2 
10.1) 10.21 (2.41 1 2 . 4 )  15.71 

7 . 9  8 . 2  8 .7  1 2 . 2  22 .5  
10.21 ( 0 . 4 1  (0.51 (2 .11  (7.01 

7 . 5  7 . a  8 . 9  18.E 26.5 
( 0 . 1 1  10.21 (0 .61  ( 2 . 2  1 18.41 

0 . 6  0.9 5.1 12.1 20.1 
(0.WI 10.21 ( 0 . 9 1  (1 .91  ( 3 . 5 )  

8.1 8 . 3  8 . 6  9 . 9 8  14.1 
( 0 . 1 1  10 .31  10.71 ( 1 . 2 )  ( 3 . 2 1  

0 0 . 1  1 . 2  4 . 2  9.4 
101 10.11  (0 .31  ( 1 . 5 1  ( 2 . 1 1  

TABLE I V  
MEAN PERCENTAGE MISCLASSIFICATIONS (WITH ASSOCIATED STANDARD 

DEVIATIONS SHOWN IN BRACKETS) FOR VARIOUS THRESHOLDING METHODS 
AS APPLIED TO 25 SYNTHETIC IMAGES OF k = 3 POPULATIONS WITH 

RESPECTIVE MEANS p ,  = 1 0 0 ,  p, = 1 2 0 ,  AND p = 1 4 0 ,  WHICH HAVE 

2.5,  5,  1 0 ,  15. AND 20. IN EACH CASE THE INITIAL THRESHOLDS ARE 
BEEN CORRUPTED BY SUPERIMPOSING GAUSSIAN N (  0, U * )  NOISE WITH U = 

BASED ON SAMPLE QUANTILES. 

0 

Na i Ye 
Error 

Ridler  and 
Calvard 

L‘oyd 

Local mean 
Iequal priors1 

Local mean 
( e s t l m a t e d  p r m r s l  

Spat la1  

ANST-Mf’ 

AMT-MI 

ICM 16=1.5 .  f ixed1 

2 . 5  15 20 5 10 
0 . 0 0 4  2 . 6  1 8 . 8  30 .5  37.4 

10.021 10.51 1 0 . 9 )  ( 1 . 4 1  (1 .41  
0 3 . 0  26 .3  37.2 4 3 . 9  
(0) 10.61 ( 2 . 0 )  (1 .71  ( 1 . 5 1  

0,004 2 . 6  25 .0  37.9 45 .4  
10.021 10.41 12.81 (2.01 ( 1 . 7 )  

7 . 6  8 . 0  9 . 2  1 6 . 6  27.5 
( 0 . 1 )  ( 0 . 2 )  ( 0 . 5 1  14.31 (6 .91  

7 . 9  8 . 1  8 . 8  1 4 . 4  2 8 . 6  
10.21 ( 0 . 4 1  10.61 ( 3 . 6 )  ( 7 . 7 1  

7 . 5  7 . 8  9 . 0  1 6 . 6  30 .4  
(0.11 (0.2) 10.61 14 .71  ( 8 . 2 1  

0 . 6  0 . 9  5 . 2  14 .3  22 .7  
( 0 1  10.21 10.91 (3 .51  ( 3 . 9 1  

9 . 9 8  19 .4  8 . 3  8.6 8.1 
(0.11 10.21 10.71 1 . 2  (10 .11  

0 0 . 0 9  2 . 8  9 .86  1 7 . 3  
101 (0 .091  ( 1 . 5 1  ( 4 . 0 1  15.31 

tial continuity breaks down; see Figs. 7(c)-(e) and (h). This de- 
parture is most evident at the 111-113 boundary where pixels are 
almost invariably misclassified as belonging to II,. This is because 
the spatial allocation variable G, being a weighted average of val- 
ues in the neighborhood of a pixel, has expected value closest to 
p2 along the II,-IT, boundary. Relatively few errors are due to mis- 
classification of pixels as belonging to either II, or II,. Further, 
populations IT, and IT3 having the greatest separation of means, are 
rarely confused. 

The “partially spatial” ANST-MF method seems to produce ac- 
ceptable results for “low” U. However, for relatively highly con- 
taminated images the spatial methods produce preferable solutions. 
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Fig 8 20 X 12 wbimdge containing an object (with “hot-spot”) and 
background (with “clutter”) extracted from a 512 X 384 image 

(c) ( 4  
Fig. 9 .  Image of Fig. 8 thresholded using the following methods: (a) Non- 

spatial thresholding (Ridler and Calvard), (b) local mean (equal priors), 
(c) ANST-MF, and (d) AMT-MF. In each case we assume k = 2 pop- 
ulations. 

ular, single pixels protruding from the object boundary are mis- 
classified as background because of the smoothing effect. It should 
be worthwhile incorporating some edge-detecting algorithm (see 
[16]), but again the computational complexity should be borne in 
mind. 

Example 3 
Fig. 8 shows a 20 X 12 subimage containing an object and back- 

ground taken from a 512 X 384 FLIR image of a scene. Fig. 9 
shows the results of segmenting Fig. 8 into k = 2 populations using 
the following methods: a) Nonspatial thresholding (Section 111-A), 
b) local mean thresholding (Section V-B), c) ANST-MF, and d) 

Note that the observed image (Fig. 8) contains relatively little 
noise, and so the segmented images do not suffer from “salt and 
pepper” noise. Consequently, the relative performance of the non- 
spatial methods is improved. The segmented images are all similar, 
but the local/spatial methods tend to produce more rounded objects 

AMT-MF. 

(8) (h) 
Fig. 7 .  Results of thresholding Fig. 6(b), with (a)-(h) as in Fig. 4 .  

In the k = 3 population case, ICM (0 = 1.5, fixed) appears to 
produce the best results. However, the quality of the solution is 
greatly affected by the initial values; for example, for ‘‘large’’ U 

and a “poor” starting value the results for ICM and AMT-MF are 
similar. 

We have kept /3 fixed at 1.5 for each iteration of ICM to min- 
imise the computational complexity to a level which is similar to 
that involved in AMT-MF. It should be noted that whilst E M ( @  
= 1.5, fixed) is less robust to changes in the initial classification 
than the other methods (AMT-MF in particular), this may not be 
the case if 0 is allowed to vary, e.g., if 0 is estimated at each 
iteration. 

Most of the errors incurred by the methods using local/spatial 
information is found at the object/background boundary. In partic- 

than the nonspatial methods. 
It can be argued that the image in Fig. 8 is really composed of 

k > 2 populations: the object containing regions of different 
brightness (“hot-spots”) and the background containing “clutter” 
(particularly at the top of the image). However, if we use k = 3 
for example, then the cluster in the background is confused with 
the object by methods a) and b). Surprisingly, method c) produces 
the best results on this occasion. 

VIII. DISCUSSION 
The iterative selection method is a useful technique for deter- 

mining threshold values. It is relatively simple to implement and 
requires relatively little computer storage or computer time. This 
is of great importance for real-time applications. The final output 
is only a local optimum solution which depends on the guessed 
initial parameter values. (The argument is similar to that followed 
in [6].) A global optimum solution could be obtained by evaluating 
all possible local optimum solutions and then choosing the best of 
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these according to some criterion, for example that solution with 
maximum likelihood; or see [ 101. 

Our main concern is with the univariate k = 2 population prob- 
lem when the image contains an object and background. In this 
case, those methods which utilize local/spatial information present 
in the image are superior to the nonspatial methods. AMT-MF pro- 
duces acceptable results which are not greatly affected by starting 
values. However, ICM does produce better results when a “good” 
starting value is used. Note that in practice we have no knowledge 
of the population parameters and so “good” starting values cannot 
be guaranteed. Thus, in practice we would recommend the use of 
AMT-MF for k = 2. 

When the image contains k 2 3 populations then the local/spa- 
tial methods are susceptible to boundary confusion. This is most 
evident at low noise levels when boundaries between populations 
can be “outlined” with an intermediate population (in the sense 
that the populations are ordered by magnitude of their respective 
means). At relatively “low” noise levels it seems that a “par- 
tially” spatial method (ANST-MF) produces acceptable results. 
However, ICM produces the best results over the full range of noise 
levels considered, although these are greatly affected by starting 
values. 

The “real” image considered in this paper was relatively un- 
contaminated but did contain k 2 3 populations and background 
clutter. Therefore, it is not surprising that the spatial methods pro- 
duced rather disappointing results. Further analysis, of more 
“highly” contaminated images containing various numbers of 
populations and background clutter, is required before the practical 
use of these methods can be assessed. It is also of interest to see 
how the methods behave when the population variances are un- 
equal. It should be noted that the segmentation of the image is 
regarded as only a first step in the analysis of the confenfs of the 
image and any assessment of performance should also take into 
account the later stages of (unsupervised) image analysis. 

We have found that median postsmoothing improves the final 
classification, with the greatest improvement at the first applica- 
tion. Our results show that “better” results are obtained if the me- 
dian filtering is incorporated into an alternating process with one 
of the basic thresholding methods. For two populations and/or high 
noise levels AMT-MF produces acceptable results. 

Note that all the methods are liable to identify more than one 
population when the image contains only background if we wrongly 
assume k 2 2 when thresholding. The ICM and AMT-MF methods 
fare better than the non-spatial methods, producing at worst only 
“small blobs.” However, the nonspatial methods suffer from high 
levels of random noise; further, if post-smoothing is applied, large 
“objects” are formed. This demonstrates the need for prior knowl- 
edge of k .  

There is little to choose between the local mean and the spatial 
thresholding methods; however, the simplicity of the former may 
be an advantage. The spatial method may possibly be improved by 
fitting a suitable model for the semivariogram. However, our work 
has been limited to the cases where there is no spatial correlation 
a priori and U :  = U ’ ,  for all i. 

ICM(P = 1.5, fixed) produces the “best” image if the initial 
approximation is “good” but can produce disappointing results if 
a “poor” initial approximation is used. However, the AMT-MF 
method produces acceptable results and is less dependent on start- 
ing values. Note that all the thresholding methods considered here 
converge to ‘‘local’’ solutions, and so all are to some extent de- 
pendent on starting values. 

The results for ICM may be improved by allowing /3 to vary at 
each iteration, although the computational complexity will be in- 
creased; different priors using the shape/size of the object may also 
be useful. All of the methods may benefit from the inclusion of 
some edge-detecting routines (see [16]), at the expense of an in- 
creased computational burden. 
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