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Abstract

GRAPPA is a well know parallel imaging method that recovers the MR magnitude image from aliasing by using a
weighted interpolation of the data in k-space. To estimate the optimal reconstruction weights, GRAPPA uses a band along
the center of the k-space where the signal is sampled at the Nyquist rate, the so-called Autocalibrated (ACS) lines. However,
while the subsampled lines usually belong to the medium-high frequency areas of the spectrum, the ACS lines include the
low frequency areas around the DC component. The use for estimation and reconstruction of areas of the k-space with
very different features may negatively affect the final reconstruction quality. We propose a simple, yet powerful method
to eliminate this artifact, based on the discrimination of the low frequency spectrum. We empirically show this approach
achieves great enhancement rates, while keeping the same complexity of the original GRAPPA.

Key words: GRAPPA, parallel imaging, estimation

INTRODUCTION

The GeneRalized Autocalibrated Partially Parallel Acquisitions (GRAPPA) (1) is one of the most prominent Parallel Imaging re-
construction techniques for subsampled multiple-coil MR data. The reconstruction takes place into the k-space, where the missing
lines are interpolated by a weighted combination of the adjacent acquired lines. The weights used in the reconstruction are estimated
from the acquired data themselves by solving an overdetermined system of linear equations posed over the so-called Autocalibrated
(ACS) lines. The ACS lines are a set of lines from the center of the k-space which are sampled at the Nyquist rate (i.e., unacceler-
ated). As shown in Fig. 1-left, the ACS lines involve the center of the k-space (low frequencies of the image) as well as the high
frequency areas. Since the subsampled areas of the k-space are usually in the medium to large frequencies, the inclusion of the DC
and low frequency components in the estimation may bias the reconstruction weights.

In order to improve the reconstruction performance of GRAPPA, many authors have proposed modifications to the original
algorithm. Most of the efforts have been oriented to the reconstruction step rather than the estimation of the interpolation weights,
like using self-calibrating iterative methods (2), banks of filters (3), (4)), image support reduction via a high-pass filtering (5), or
kernel-based approaches (nonlinear GRAPPA) (6). However, some authors did detect the problem of estimation and proper selection
of the ACS lines. In (7) the authors propose a different sampling pattern of the ACS, and in (8) a method to remove outliers before
estimating the weights is suggested instead.

In this paper, we propose a simple but effective method to estimate the GRAPPA weights that highly improves the final quality of
the reconstructed image. It is based on the removal of the low frequency areas of the ACS lines only during the estimation step, to
avoid the bias they introduce in the reconstruction weights. The method is fully compatible with the original GRAPPA formulation,
and it can be easily implemented into the commercial scanning software. In addition, the method is also compatible with other
optimization methods proposed in literature.

THEORY

Estimation of the GRAPPA reconstruction weights
The original GRAPPA reconstruction strategy estimates the full k-space in each coil from a sub–sampled k-space (1), (9), (10)

acquisition. While the sampled data sSl (k) remains the same, the reconstructed lines sRl (k) are estimated through a linear combi-
nation of the existing samples. Weighted data in a neighborhood η(k) around the estimated pixel from several coils is used for such
estimation:

sRl (k) =

L∑
m=1

∑
c∈η(k)

sSm(k− c)ωm(l, c), [1]
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Figure 1. Frequency distribution in the k-space of 1 coil.
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Figure 2. Average of the magnitude of the 32 ACS lines of a 8-coil acquisition (k-space).

with sl(k) the complex signal from coil l at point k and ωm(l,k) the complex reconstruction coefficients for coil l. These coef-
ficients are determined from the center lines of the k-space, the so-called ACS lines, which are sampled at the Nyquist rate (i.e.
unaccelerated) as shown in Fig. 1. The weights ωm(l,k) are obtained using eq. ([1]) over these ACS lines

sACS
l (k) =

L∑
m=1

∑
c∈η(k)

sACS
m (k− c)ωm(l, c), l = 1, · · · , L [2]

and fitting the resultant equation with some optimization method.

Frequency discrimination of the ACS components
Since the estimated weights are the same for each point within the image for every coil (they do not depend on k), there is a

major problem with the estimation: while the subsampled lines usually belong to the medium-high frequency areas of the spectrum,
the ACS lines include the low frequency areas around the DC component (see Fig. 1 for illustration). The use for estimation and
reconstruction of areas of the k-space with very different features may negatively affect the final reconstruction quality.

The influence of the different areas of the spectrum over the final image is a very well-know topic in the signal processing
field (11). However, in GRAPPA, the different properties of the spectrum are not taken into account when estimating the reconstruc-
tion weights. As a result, there is a bias due to the low frequency components in the final coefficients that worsens the reconstruction.

As an illustration, in Fig. 2, the average of the magnitude of the 32 ACS lines of a 8-coil acquisition is depicted. Note that, clearly,
the signal around the DC component has very different properties in shape and magnitude when compared to the medium and high
frequency areas.

Accordingly, the center of the k-space will have most of the energy of the ACS components. In Fig. 3 the ratio between the
energy of a centered square window of size N × N with the total ACS energy is depicted for data sets 1 and 2 (later explained in
section III). Note that a 5 × 5 window represents the 80% of the energy of the ACS lines, while a 31 × 31 window has more than
95% of the energy.

Our proposal to improve the estimation of the weights lays on a proper selection of the coefficients within the ACS lines, which
advises discarding of those points around the DC component. Although more developed approaches can be made, in this work we
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Figure 3. Ratio of the energy of a square window centered in the DC component as a function of the size.
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simply propose the elimination of a square window in the center of the k-space, as shown in Fig. II-B. Thus, the data used for
estimation will be a subset of the ACS lines:

ACSR = ACS− {Ck[N ×N ]}

where ACS stands for all ACS points, and Ck[N ×N ] is a N ×N square centered in the DC component. Other shapes may be used;
a square was elected for the sake of simplicity.

If we assume a symmetrical distribution of the energies of the frequency components around the center of the k-space, the removed
window will accomplish all the center of the ACS, leaving some lines in the top and the bottom available for reconstruction. The
number of lines will depend on the acceleration rate, R. Thus, for a symmetrical distribution of the energies, we can define the
optimal size of N as

Nopt = |ACS| − (R+ 1) [3]

where |ACS| is the number of ACS lines. However, in practical situations, the energy distribution is not totally symmetrical and
therefore it is advisable to choose a smaller window:

N ≤ |ACS| − (R+ 1).

The assumption in eq. [3] will later be tested on the experiments section.
The method proposed is totally compatible with the existing GRAPPA, and can be easily included in the scanner software. The

reduction of the amount of data used for estimation goes along with a reduction on the number of equations to fit in eq. ([2]), and,
in some cases, that also means an acceleration of the estimation.

As a final recall, note that the center of the k-space is acquired, and although it is not used for coefficient estimation, it is indeed
used for reconstruction. Such a simple approach will highly improve the reconstruction, as shown in the following experiments.

MATERIALS AND METHODS

For numerical validation of the method, three non accelerated acquisitions are considered:
• Data set 1 (DS1): an 8-channel head coil data acquired on a GE Signa 1.5T EXCITE scanner, FGRE Pulse Sequence,

TR/TE=500/13.8, matrix size 256×256, FOV=20×20cm.
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Square Window Round Window
Data Set 1 Data Set 2 Data Set 1 Data Set 2

Window Size MSE SSIM MSE SSIM MSE SSIM MSE SSIM
0 3.5086 0.9012 5.8274 0.8096 3.5086 0.9012 5.8274 0.8096
1 3.3022 0.9110 5.5239 0.8227 3.5489 0.8997 5.8738 0.8073
3 3.1600 0.9173 4.9119 0.8486 3.2367 0.9140 5.3516 0.8303
5 2.8816 0.9291 4.4455 0.8700 3.0903 0.9204 4.9279 0.8484
7 2.5768 0.9419 4.0476 0.8903 2.8268 0.9317 4.4411 0.8705
9 2.4586 0.9470 3.9116 0.8975 2.6143 0.9406 4.0975 0.8874
11 2.4338 0.9483 3.8009 0.9025 2.4857 0.9460 3.9542 0.8952
13 2.3249 0.9524 3.6841 0.9080 2.4367 0.9481 3.8253 0.9015
15 2.2222 0.9563 3.5622 0.9137 2.3278 0.9523 3.7399 0.9056
17 2.1760 0.9581 3.4867 0.9170 2.2557 0.9550 3.6230 0.9109
19 2.1466 0.9592 3.4255 0.9199 2.2003 0.9572 3.5348 0.9150
21 2.1118 0.9605 3.3594 0.9230 2.1663 0.9585 3.4875 0.9172
23 2.0611 0.9624 3.3061 0.9254 2.1422 0.9594 3.4232 0.9202
25 2.0321 0.9636 3.2245 0.9294 2.1133 0.9605 3.3719 0.9228
27 1.9927 0.9654 3.1226 0.9344 2.0764 0.9619 3.3018 0.9262
29 1.9670 0.9674 3.0829 0.9373 2.0430 0.9633 3.2340 0.9299
31 2.1773 0.9663 3.2919 0.9362 2.0077 0.9650 3.1677 0.9338

TABLE I. Reconstruction performance for different size N of the Removed Window Ck[N ×N ] for the 3 Data Sets, acceleration
factor R = 3 and 32 ACS lines. Square and round windows are considered.

• Data set 2 (DS2): MR data-set from (12) (the authors provide their data on-line1); eight-channel head array from 3 Tesla GE
scanner, FGRE sequence, TR/TE=300/10, matrix size 256×256, FOV=22×22cm.

• Data set 3 (DS3): a dopped ball phantom, scanned in an 8-channel head coil on a GE Signa 1.5T EXCITE 12m4 scanner with
FGRE Pulse Sequence, matrix size 128×128, TR/TE=8.6/3.38, FOV 21×21cm.

The following experiments are carried out:
1) Test of the reconstruction quality as a function of the removed window size. We simulate two accelerated acquisitions with 32

and 16 ACS lines (effective acceleration factors of 2.37 and 2.67 respectively) and uniform acceleration factor R = 3. Large
acceleration rate is considered to highlight the differences in reconstruction. A square window of size N × N is removed
from the center of the ACS lines for estimation. N will range from 1 to 31 (for 32 ACS lines) and from 1 to 15 (for 16 ACS
lines). The experiment is repeated for a round window of diameter N . For numerical comparison, two quality indexes are
used: the Mean Squared Error (MSE) (13) and the Structural Similarity Index (SSIM) (14). The first index gives a measure
for the global error in the image, while the second compares the structural similarities. For the latter, the closer to one, the
better the reconstruction is. The comparison is done over the CMS in the x-space.

2) Validation of the assumption for the optimum size for N proposed in eq. [3]. We simulate acquisitions with 16, 24 and 32
ACS and acceleration rates of 2, 3 and 4. We will use the MSE of the reconstructed signal as a quality measure. To increase
the number of experiments and to test low SNR data, Gaussian noise is added to each of the signals, so that

max(SNR) =
max{Sl(x)}

σ
= 25

3) Test of the reconstruction quality for a fixed window for different acceleration rates and number of ACS lines. The data is
subsampled at three different rates, R=2, R=3 and R=4, and 32, 24 and 16 ACS lines are considered. The size of the removed
window will be dynamically selected as a function of R and the number of lines accordingly to the results of the previous
experiment. For comparison MSE and SSIM are used.

4) Finally, we will compare the proposed method with other GRAPPA improvements from literature: Fast Robust (FR) GRAPPA
(8), High-pass GRAPPA (HP) and Non-linear (NL) GRAPPA (6). All the algorithms are similarly built in MATLAB and MSE
and execution time are measured. As an illustration of the possibility of using the proposed method together with existing
ones, we will merge it with FR-GRAPPA and HP-GRAPPA.

RESULTS

Results for the first experiment are collected in Table I (32 ACS) and Table II (16 ACS). N = 0 denotes the case in which
no window is removed from the ACS, i.e., the standard GRAPPA. For the 32 ACS acquisition, note that, as N grows, the MSE

1http://www.ece.tamu.edu/˜jimji/pulsarweb/index.htm
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Data Set 1 Data Set 2 Data Set 3
Window Size MSE SSIM MSE SSIM MSE SSIM

0 3.9150 0.8828 6.3934 0.7885 5.3948 0.7788
1 3.6389 0.8976 6.1485 0.7991 5.1335 0.7933
3 3.5539 0.9022 5.7116 0.8166 3.9796 0.8571
5 3.3378 0.9118 5.3058 0.8357 2.8824 0.9229
7 3.0320 0.9246 4.7674 0.8644 2.5899 0.9373
9 2.8090 0.9351 4.5686 0.8777 2.3631 0.9456
11 2.7675 0.9386 4.4532 0.8863 2.2439 0.9499
13 2.8485 0.9448 5.0665 0.8903 2.2027 0.9527
15 3.3027 0.9478 6.2879 0.8939 5.2342 0.9198

TABLE II. Reconstruction performance for different size N of the removed square window Ck[N × N ] for the 3 Data Sets,
acceleration factor R = 3 and 16 ACS lines.

N for min{MSE}
ACS R DS1 DS1+Noise DS2 DS2+Noise DS3 DS3+Noise Average Median
32 2 31 27 29 31 25 29 28.66 29
32 3 31 29 27 31 25 27 28.33 28
32 4 27 27 27 27 25 25 26.33 27
24 2 23 21 21 21 17 21 20.66 21
24 3 23 19 19 23 17 21 20.33 20
24 4 19 19 19 21 17 19 19 19
16 2 13 11 13 13 13 13 12.66 13
16 3 13 11 11 11 13 13 12 12
16 4 11 11 11 11 11 11 11 11

TABLE III. Optimal size N of the removed window Ck as a function of the number of ACS lines and the acceleration factor R.

decreases and the SSIM index increases, showing both an improvement in the final quality of the reconstructed image. Note that the
MSE reduces up to a 45% (3.5 to 1.9) for DS1 and almost to 50% for DS2. When the window size is too large, close to the number
of ACS, we can also detect a slight degradation of the indexes, due to an excessive loss of data for estimation, but even then, there
is a clear improvement when compared to the original GRAPPA method. In addition, we can see that there is not any particular
advantage of using of a round window vs. a square one.

A similar behavior can be observed for the 16 ACS lines experiment. In this case, the degradation of the quality when the removal
is excessive is much more clear, due to a smaller size of the estimation area and the smaller amount of data available for estimation.
Nevertheless, it also shows a great reduction of the error when the central part of the k-space is removed. Note that the estimation
with 16 ACS lines removing a 11×11 window is even better than a traditional 32 ACS acquisition. The proper choice of the samples
used for estimation increases the accuracy of the reconstruction. The number of ACS lines can be reduced and even the acceleration
rate can be increased, getting a higher final effective acceleration rate.

Results for the second experiment are collected in Table III. The optimal size for N is selected as

Nopt = argmin
N
{MSE}.

The average and the median for each pair [ACS,R] are considered. The median results for the experiments are totally consistent
with eq. [3]. However, there are particular cases in which the maximum lays in smaller sizes. The selected size will depend on
several parameters like the acquisition modality and probably the SNR. Therefore, a calibration step may be necessary.

Results for the third experiment are collected in Table IV. FD-GRAPPA stands for Frequency Discriminated GRAPPA, the
proposed method. The optimal window size in eq. [3] is used. N/A denotes the case in which the unsampled lines are simply padded
with zeros (no reconstruction method is applied). In all the cases, the MSE improves when using FD. This is particularly significant
for DS3 and R = 4, where the original GRAPPA shows an error larger than the non-reconstructed case. The error of the proposed
method is about 5 times smaller than GRAPPA. For very high (and unrealistic) acceleration rates like R = 4, the first two data sets
shows a better SSIM for the N/A case than the proposed method. However, note that even then FD is better than classical GRAPPA.

For the sake of illustration, some visual results for DS1 and DS3 are shown in Fig. 5. There is a clear improvement in the visual
quality of the reconstructed data when FD is used. Note that even for high acceleration rates (R=4) FD-GRAPPA is able to recover
images with an acceptable visual quality, when the traditional GRAPPA fails. Similar results can be seen in the doped ball phantom,
for R = 3. We can appreciate a texture pattern inside the ball in the traditional GRAPPA reconstruction that does not appears in FD.

Finally, results for the comparative experiment are on Table V. For FR-GRAPPA a 10% outlier rejection is selected (the one
that gives the best performance in the three data sets). For HP-GRAPPA optimal result have been found for c = 10 and w = 2.
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SSIM
Acceleration 2 3 4
ACS 32 24 16 32 24 16 32 24 16
N/A 0.9321 0.9094 0.8747 0.9327 0.9086 0.8550 0.8964 0.8964 0.8571
GRAPPA 0.9625 0.9575 0.9484 0.9012 0.8938 0.8828 0.6280 0.6280 0.6094
FD-GRAPPA 0.9807 0.9779 0.9744 0.9636 0.9556 0.9351 0.8773 0.8773 0.8475

MSE
Acceleration 2 3 4
ACS 32 24 16 32 24 16 32 24 16
N/A 4.5615 5.9804 8.2481 5.1398 6.8181 10.0232 6.1890 6.1890 8.1462
GRAPPA 1.9727 2.1199 2.3793 3.5086 3.6729 3.9150 11.2902 11.2902 11.9503
FD-GRAPPA 1.4448 1.5469 1.6598 2.0321 2.2776 2.8090 4.2099 4.2099 4.8756

(a) Data set 1
SSIM

Acceleration 2 3 4
ACS 32 24 16 32 24 16 32 24 16
N/A 0.9031 0.8660 0.8262 0.9168 0.8849 0.8170 0.8594 0.8594 0.8078
GRAPPA 0.9212 0.9165 0.9091 0.8096 0.7997 0.7885 0.4883 0.4883 0.4746
FD-GRAPPA 0.9557 0.9500 0.9402 0.9294 0.9118 0.8777 0.7961 0.7961 0.7354

MSE
Acceleration 2 3 4
ACS 32 24 16 32 24 16 32 24 16
N/A 5.7886 8.2774 12.1783 6.2917 8.9411 14.3937 7.7442 7.7442 10.8953
GRAPPA 3.2484 3.3780 3.5769 5.8274 6.0765 6.3934 17.4195 17.4195 18.3490
FD-GRAPPA 2.4234 2.6259 2.8980 3.2245 3.7497 4.5686 6.5033 6.5033 8.0746

(b) Data set 2
SSIM

Acceleration 2 3 4
ACS 32 24 16 32 24 16 32 24 16
N/A 0.8782 0.8444 0.7943 0.8951 0.8746 0.7992 0.8259 0.8259 0.7764
GRAPPA 0.9149 0.9011 0.8790 0.8075 0.7932 0.7788 0.5142 0.5142 0.4960
FD-GRAPPA 0.9711 0.9675 0.9642 0.9689 0.9639 0.9456 0.9074 0.9074 0.8844

MSE
Acceleration 2 3 4
ACS 32 24 16 32 24 16 32 24 16
N/A 6.2345 7.7624 10.1849 7.2698 8.8445 11.6881 8.4905 8.4905 10.5451
GRAPPA 2.8984 3.1534 3.5413 4.8167 5.1035 5.3948 15.5504 15.5504 16.6166
FD-GRAPPA 1.6568 1.7552 1.8529 1.7004 1.8479 2.3631 3.2237 3.2237 3.7835

(c) Data set 3

TABLE IV. Results for the second experiment: the size of the window is dinamically chosen. (N/A stands for non parallel imaging
Applied).

Again, the use of FD improves the MSE when compared with GRAPPA, but also note that the acquisition is accelerated, due to
the reduction in the number of equations used to estimate the weights. The proposed method even improves FR-GRAPPA and
HP-GRAPPA while being much faster than the former. When FD is used together with another optimization method, FD+FR and
FD+HP, the MSE is even better and the execution time is reduced. Result of the NL-GRAPPA algorithm is, in all cases, slightly
better that the proposed method. However, note that this improvement goes with a huge processing time when compared with
FD-GRAPPA (23 minutes vs. 1 second).

CONCLUSIONS

The ACS lines commonly used to estimate the GRAPPA coefficients comprise high, medium, and also low frequency samples,
meanwhile the lines to be retrieved by interpolation range from medium to high frequencies. As a result, the estimation of the
interpolation weights becomes biased towards the high energy, low frequency spectrum. A simple elimination of the center samples
of the ACS lines will highly improve the accuracy of the GRAPPA coefficients and therefore the final image reconstruction. At
the same time, a reduction in the number of equations will accelerate the estimation. This simple method gives better results
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Figure 5. Reconstruction of subsampled MRI data from 8 coils using GRAPPA

Data set 1, 32 ACS R = 3
GRAPPA FD FR (10%) FD+FR (10%) HP FD+HP NL

MSE 3.5086 1.9927 2.1733 1.8859 2.0991 1.9598 1.7347
Time(s) 1.27 1.24 157.47 82.45 1.41 1.25 1379.2

Data set 2, 32 ACS R = 3
GRAPPA FD FR (10%) FD+FR (10%) HP FD+HP NL

MSE 5.8486 3.1226 3.3832 2.9429 3.3106 3.0733 2.7222
Time(s) 1.28 1.25 163.26 125.65 1.31 1.26 1401.3

Data set 3, 16 ACS R = 3
GRAPPA FD FR (10%) FD+FR (5%) HP FD+HP NL

MSE 5.5415 2.2027 3.1912 2.1818 2.7424 3.0742 2.1818
Time(s) 0.33 0.28 30.64 13.65 0.33 0.29 226.91

TABLE V. Comparison of different GRAPPA improvement algorithms

than traditional GRAPPA even with the half of the ACS lines. In addition, the improvement of the reconstruction quality makes it
feasible using higher acceleration rates. The method is also compatible with other GRAPPA optimization techniques, such as outlier
rejection, leading to further improvements in the final reconstruction. The simplicity of the method makes it suitable to be easily
incorporated in commercial scanners.
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