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Preface

This book is a compendium of the main contributions that our lab has done in
the field of noise analysis in MRI along the last 8 years. Since many different ap-
proaches have been proposed, we think that it is important to have a chronological
point of view to fully understand the different approaches. This book is the seed of
another book in which the journals are rewritten with the same notation to give a
deeper unity to the work.

Valladolid, Spain
Feb. 2015 Santiago Aja Fernández
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Part I
Noise Models





Statistical noise models for Magnetic Resonance
Imaging

Santiago Aja-Fernández, Antonio Tristán-Vega∗

Abstract Many image processing applications within MRI are grounded on stochas-
tic methods based on the prior knowledge on the statistics of noise. The ubiquitous
Gaussian model provides a poor fitting for medium-low SNRs, yielding to the use
of Rician statistics: the noise in MRI has been traditionally modeled as a stationary
process governed by a Rician distribution with constant noise power at each voxel.
Modern MRI systems turn this model questionable, making it necessary to develop
into more complex patterns. We aim at comprehensively reviewing the main statis-
tical rationales and formulations for the noise in MRI lately found in the literature.
We attend to three different criteria: the first-order, voxel-wise probability law, the
possible spatial variability of the parameters of such distribution, and the possible
noise interdependences between neighboring voxels. Several applications using sta-
tistical methods are overviewed, discussing the implications each of the models has
on them. Finally, we explore the applicability of the surveyed models to some MRI
protocols commonly used. Whereas many parallel and nonparallel acquisitions like
GRAPPA and SENSE may be fitted into one of the existing models, other nonlinear
reconstruction procedures are lacking a proper noise characterization.

1 Introduction

Magnetic Resonance (MR) data is known to be affected by several sources of qual-
ity deterioration, due to limitations in the hardware, scanning times, movement of
patients, or even the motion of molecules in the scanning subject. One source of
degradation that affects most of the acquisitions is noise.

∗ This chapter was previously published as a Technical Report:Santiago Aja-Fernández, Antonio
Tristán-Vega, A review on statistical noise models for Magnetic Resonance Imaging, Tech Report
of the LPI, TECH-LPI2013-01, Universidad de Valladolid, Spain, Jun. 2013

3



4 Aja-Fernández and Tristán-Vega

The term noise in MR can have different meanings depending on the context.
For example, it has been applied to degradation sources such as physiological and
respiratory distortions in some MR applications and acquisitions schemes [1, 2].
Even acoustic sources (the sound produced by the pulse sequences in the magnet)
are sometimes referred to as noise [3]. In this paper we will obviate these issues, fo-
cusing on the thermal noise introduced during data acquisition. The principal source
of thermal noise in most MR scans is the subject or object to be imaged, followed
by electronics noise during the acquisition of the signal in the receiver chain. It is
produced by the stochastic motion of free electrons in the RF coil, which is a con-
ductor, and by eddy current losses in the patient, which are inductively coupled to
the RF coil.

The presence of noise over the acquired MR signal is a problem that affects not
only the visual quality of the images, but also may interfere with further processing
techniques such as segmentation, registration or fMRI analysis [4, 5, 6]. There are
different ways to cope with this degradation, but, due to the random nature of ther-
mal noise, a probabilistic modeling is a proper and powerful solution. The accurate
modeling of signal and noise statistics in MR data usually underlies the tools for
processing and interpretation within Magnetic Resonance Imaging (MRI).

One of the most direct approaches to cope with acquisition noise in MRI (of
course, not the only one) is signal estimation via noise removal. Traditionally, noise
filtering techniques in different fields have been based on a well-defined prior statis-
tical model of data, usually a Gaussian model. Noise models in MRI have allowed
the natural extension of many well known techniques to cope with features specific
of MRI. Many examples can be found in the literature, such as the Conventional
Approach (CA) [4], Maximum Likelihood (ML) [7], linear estimators [8, 9, 10], or
adapted non-local mean schemes [11, 12, 13]. However, an accurate noise model-
ing may be useful in MRI not only for filtering purposes, but also for many other
processing techniques. For instance, Weighted Least Squares methods to estimate
the Diffusion Tensor (DT) have proved to be nearly optimal when the data follows
a Rician [14] or a non-central Chi (nc-χ) distribution [15]. Other approaches for
the estimation of the DT also assume an underlying Rician model of the data: ML
and Maximum a Posteriori (MAP) estimation [16, 17], or sequential techniques for
online estimation [18, 19] have been proposed. The use of an appropriated noise
model is crucial in all these methods to attain a statistically correct characterization
of the underlying signals.

Other methods in MRI processing that benefit from relying on a precise noise
distribution model include automatic segmentation of regions [20, 21], compressed
sensing for signal reconstruction [22, 23], and fMRI activation and simulation [24,
25, 26]. All in all, many examples in literature have shown the advantage of statisti-
cally modeling the specific features of noise for a specific typology of data.

For practical purposes, it has been usually assumed that the noise in the image
domain is a zero-mean, spatially uncorrelated Gaussian process, with equal variance
in both the real and imaginary parts. In case the data is acquired by several receiving
coils, the exact same distribution is assumed for all of them. As a result, in single
coil systems the magnitude data in the spatial domain are modeled using a station-
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ary Rician distribution [5]. When multiple (independent) coils are considered and
the k-space is fully sampled, the natural extension of the Rician model yields to a
stationary noncentral-χ (nc-χ) distribution [27], whenever the different images are
combined using sum of squares, the variance of noise is the same for all coils, and
no correlations exist between them.

These two distributions, Rician and nc-χ, have been extensively used in the MR
literature whenever a noise model is needed. However, in modern acquisition sys-
tems, they may no longer hold as reliable distributions. Interpolations due to non-
Cartesian sampling, ghost-correction post-processing for acquisitions schemes such
as EPI [28, 29], manufacturer-specific systems for noise and artifacts reduction, or
coil uniformity correction techniques will dramatically alter spatial noise charac-
teristics. Thus, in many practical situations, the initial assumptions on the nature
of noise do not completely hold. On the other hand, even when these schemes are
not used, nowadays MRI systems often collect subsampled versions of the k-space
to speed-up the acquisitions and palliate phase distortions. In order to correct the
aliasing artifacts produced by this subsampling, some reconstruction methods are
to be used, the so-called Parallel MRI (pMRI) techniques [30, 31]. The most popu-
lar among them, owing to their common use in commercial devices, are Sensitivity
Encoding (SENSE) [32] and GeneRalized Autocalibrated Partially Parallel Acqui-
sitions (GRAPPA) [33], but there are many more, and lots of new emerging ones
every day [30, 34].

In this paper we will review the main statistical models commonly used in MRI,
under the assumption of a direct acquisition, i.e., we will assume that: (1) data are
acquired in the k-space using a regular Cartesian sampling; (2) the different contri-
butions of noise are all independent, so that the total noise in the system is the sum
of the noise from each individual source; and (3) post processing schemes such as
EPI correction are not applied. Though these assumptions may seem unrealistic for
certain applications, they are common in the literature, and otherwise necessary to
achieve a reasonable trade-off between the accuracy of the model and its general-
ization capabilities. Note the corrections mentioned in the previous paragraph are
usually manufacturer-dependent or they even depend on the particular magnet de-
vised, hence they will need a more in-depth study which is far from the scope of this
paper. In many cases, however, such study can be derived from the general models
here described.

With the aforementioned limitations, we present a comprehensive study of the
noise models arising in the most common MRI protocols currently used, mainly
single- and multiple-coil acquisitions without k-space subsampling, SENSE, and
GRAPPA. In first place we review the popular Rician model as a first order statistical
model for the voxel-wise distribution of noise, and introduce the nc-χ model as
a necessary generalization in many multiple-coil systems. pMRI methods require
a more careful study, presented in the next section, with the identical conclusion
that the nc-χ generalization is mandatory for GRAPPA. The other widely accepted
assumption in noise modeling, i.e., the noise power being constant for the whole
image domain, is reviewed next. We reason that a non-stationary behavior must be
assumed in many cases due to the inhomogeneous sensitivity of the receiving coils,
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the existing correlations between the thermal noise produced by each of them, and
the reconstruction process itself with GRAPPA. With SENSE, the reconstruction
process introduces a different side effect, the spatial correlation of the noise pattern,
which is studied in the final part of the manuscript. To conclude, we show the actual
relevance of the features studied through representative examples, and discuss their
impact over a number of MRI processing pipelines, explaining how to adapt the
existing methods based on stationary Rician noise to more complex models.

2 First-order statistical models for fully sampled signals

2.1 Complex single– and Multiple–Coil MR signals

The k–space data are acquired in multiple-shot acquisitions through the repeated
application of excitation pulses with a different phase encoding gradient for each
readout gradient. Each sampled line of the k−space is frequency encoded, and the
measured signal is uniformly sampled at the desired rate. The points in the k-space
measured from the MRI scanner are thus independent samples of the RF signal
received by each coil. The primary origin of random fluctuation is the so-called
thermal noise [35], whose variance depends on the following parameters:

σ2
thermal ∝ 4kBT Reff BW , (1)

where kB is Boltzmann’s constant, T is the absolute temperature of the resistor,
Reff is the effective resistance of the coil loaded by the object to scan, and BW is
the bandwidth of the noise-voltage detecting system.

Under the assumption that the noise affects equally to all the frequencies, it is
independent for each source, and independent on the signal, it can be modeled as
a complex Additive White Gaussian Noise (AWGN) process, with zero mean and
variance σ2

Kl
[36, 37]:

sl(k) = al(k) + nl(k; 0, σ2
Kl

(k)), l = 1, · · · , L, (2)

with al(k) the noise-free signal at the l-th coil (of a total of L coils) and sl(k)
the received (noisy) signal. If the noise in the RF signal is considered stationary, it
makes sense to consider nl itself stationary (which implies that σ2

Kl
(k) = σ2

Kl
is a

constant), so that we may write:

nl(k; 0, σ2
Kl

(k)) ≡ nl(k; 0, σ2
Kl

) = nlr (k; 0, σ2
Kl

) + j · nli(k; 0, σ2
Kl

).

The complex image domain is obtained as the inverse Discrete Fourier Transform
(iDFT) of sl(k) for each slice and at each coil. Under the assumption that the
data is sampled on a Cartesian lattice, and the iDFT is applied without any kind
of interpolation/filtering/apodization/zero-padding, the iDFT will be an orthogonal
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linear transformation, and the noise in the complex image domain will still be Gaus-
sian for each receiving coil:

Sl(x) = Al(x) +Nl(x; 0, σ2
l ), l = 1, . . . , L, (3)

where Nl(x; 0, σ2
l ) = Nlr (x; 0, σ2

l ) + j · Nli(x; 0, σ2
l ). Since the iDFT is applied

to each coil, it will not introduce any correlation per sé. However, there may be
an initial noise correlation between the receiver coils due to electromagnetic cou-
pling [38, 39, 40]. As a consequence, the noise pattern in the complex image domain
may be seen as a complex multivariate (one variable per coil) AWGN process, with
zero mean and covariance matrix Σ [41]:

Σ =




σ2
1 σ2

12 · · · σ2
1L

σ2
21 σ2

2 · · · σ2
2L

...
...

. . .
...

σ2
L1 σ

2
L2 · · · σ2

L


 , (4)

with σ2
ij = ρ2

ijσiσj and ρ2
ij the coefficient of correlation between coils i-th and j-th.

While this coefficient of correlation depends only on the electromagnetic coupling
between coils i and j, the variance of noise for each coil may be easily predicted
from that in the k−space [36, 42, 43]:

σ2
l =

1

|Ω|σ
2
Kl
, (5)

where |Ω| is the size of the Field of View (FOV), i.e. the number of points used in
the 2D iDFT.

2.2 Fully sampled single coil: the Rician distribution

For a single–coil acquisition the complex model in eq. (3) simplifies to:

S(x) = A(x) +N(x; 0, σ2),

with N(x; 0, σ2) = Nr(x; 0, σ2) + j · Ni(x; 0, σ2) a complex AWGN with zero
mean and variance σ2. The magnitude signal M(x) is the Rician distributed enve-
lope of the complex signal [5]:

M(x) = |S(x)|. (6)

The probability density function (PDF) of the Rician distribution is defined as [44]2:

2 To simplify the notation, the dependency with x has been removed from the PDFs.
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Imag. component
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Fig. 1 Single-coil acquisition process. The data in both the k-space and the image domain follow a
Gaussian distribution. The final signal after the magnitude is taken will follow a Rician distribution.

pM (M |AT , σ) =
M

σ2
exp

(
−M

2 +A2
T

2σ2

)
I0

(
ATM

σ2

)
u(M), (7)

where we call In(.) the n-th order modified Bessel function of the first kind, u(.)
the Heaviside step function, and AT (x) = |A(x)|. In the image background, where
the SNR is zero due to the lack of water-proton density in the air, the Rician PDF
simplifies to a Rayleigh distribution with PDF:

pM (M |σ) =
M

σ2
exp

(
−M

2

2σ2

)
u(M). (8)

For the sake of illustration, a pipeline with the distributions involved in single coil
acquisitions is depicted in Fig. 1.

2.3 Fully sampled, uncorrelated multiple coils: the noncentral-χ
distribution

In a multiple coil system, if the k−space is fully sampled, the Composite Magnitude
Signal (CMS) must be reconstructed from the L complex signals from every coil,
Sl(x), with l = 1 · · · , L. One of the most used methods is the so-called Sum of
Squares (SoS), which can be directly applied over eq. (3) [27, 38]:

ML(x) =

√√√√
L∑

l=1

|Sl(x)|2. (9)
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In an ideal scenario the variance of noise is the same for all the coils, which are
assumed to produce uncorrelated samples. The covariance matrix Σ in eq. (4) is
hence diagonal with identical eigenvalues:

Σ = σ2 · I,

where I is the L × L identity and σ2 = 1
|Ω|σ

2
K . Under these assumptions, ML(x)

follows a noncentral χ (nc-χ) distribution [27, 45] with PDF:

pML
(ML|AT , σ, L) =

A1−L
T

σ2
ML
L exp

(
−M

2
L +A2

T

2σ2

)
IL−1

(
ATML

σ2

)
u(ML),

(10)

with A2
T (x) =

L∑
l=1

|Al(x)|2. Obviously, for L = 1, the nc-χ reduces to the Rician

distribution. In the background, this PDF simplifies to a central χ (c-χ) distribution
with PDF:

pML
(ML|σ, L) =

21−L

Γ (L)

M2L−1
L

σ2L
exp

(
−M

2
L

2σ2

)
u(ML), (11)

which reduces to Rayleigh for L = 1.

2.4 Fully sampled, correlated multiple coil: the noncentral-χ
approximation

The nc-χ distribution proposed in the previous section has been used to model
the noise in MRI when the signals at different receiving coils are combined with
SoS [27, 46, 47, 48]. However, this CMS will only show nc-χ statistics if the vari-
ance of noise is the same for all coils, and no correlation exists between them. Al-
though it is well known that in phased array systems noise correlations do exist
[41, 38, 39, 40], this effect is usually left aside due to their minimal effect and prac-
tical considerations, as stated in [27].

However, for modern acquisition systems comprising up to 32 or 64 coils, the
receivers will show in general a certain coupling. This means that the noisy samples
at each k−space location will be correlated from coil to coil. Assuming such corre-
lation is frequency-independent (i.e. the same for all k−space samples), the linear
iDFT operator will clone this exact same correlation between coils in the complex
image domain, so that Σ becomes a non-diagonal, symmetric, positive definite ma-
trix. The off-diagonal elements stand for the correlations between each pair of coils.
In this case, the actual PDF is not strictly a nc-χ, though for small correlations it
is expected that such model remains approximately valid [49]. Even when the nc-χ
assumption is feasible, correlations will affect the number of Degrees of Freedom
(DoF) of the distribution. If SoS is used, the PDF of the CMS can indeed be accu-
rately approximated with the traditional nc-χ model in eq. (10) whenever effective
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Fig. 2 Multiple-coil acquisition process. The data in both the k-space and the image domain follow
a Gaussian distribution in each coil. The final composite magnitude signal will follow different dis-
tributions depending on the method employed to aggregate coils and on the possible correlations.

parameters (reduced L and increased σ) are used [49]:

Leff(x) =
A2
T (x) tr (Σ) + (tr (Σ))

2

A∗(x) Σ A(x) + ||Σ||2F
; (12)

σ2
eff(x) =

tr (Σ)

Leff(x)
, (13)

with ||.||F the Frobenius norm and A(x) = [A1(x), A2(x), · · · , AL(x)]T . Note
that, with this approximation, the Leff(x) becomes a non integer number.

Thus, for multiple correlated coils the nc-χ model is just an approximation of
the real distribution, and effective parameters must be considered. The parameters
of the final distribution are signal-dependent, and therefore they become harder to
estimate than simpler models [50].

For the sake of illustration, a pipeline with the distributions involved in multiple-
coil acquisitions is depicted on Fig. 2. Note the correlations between coils are the
same in both the k-space and the image domain. These correlations are hardware-
dependent and thus inevitable.

3 First-order statistical models for pMRI acquistions

In the previous section we have reviewed the noise model for multiple–coil systems
when the k−space is fully sampled. However, pMRI protocols usually increase the
acquisition rate by subsampling the k−space data [30, 31], while reducing phase
distortions when strong magnetic field gradients are present. The immediate ef-
fect of the k−space subsampling is the appearance of aliased replicas in the image
domain retrieved at each coil. In order to suppress or correct this aliasing, pMRI
combines the redundant information from several coils to reconstruct a single non-
aliased image domain.
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The previously presented Rician and nc-χ models do not necessarily hold in
this case. Depending on the way the information from each coil is combined, the
statistics of the image will follow different distributions. It is therefore necessary to
study the behavior of the data for a particular reconstruction method. In this paper
we focus on two of the most popular methods, SENSE [32] and GRAPPA [33], in
their most basic formulation.

In the following sections we will assume that sSl (k) is the subsampled signal
at the l-th coil of the k−space, SSl (x) is the subsampled signal in the image do-
main, and r is the subsampling rate. Since sSl (k) is just a subsampled version of the
k−space signal, it is still corrupted with AWGN. If the iDFT is directly applied to
the subsampled signal, we will have an AWGN process [43] with variance (compare
with eq. (5)):

σ2
l =

r

|Ω|σ
2
Kl
.

with |Ω| the final number of pixels in the FOV. Note the final noise power is greater
than in the fully sampled case due to the reduced k−space averaging, as it will be
the case with SENSE (see below). On the contrary, the iDFT may be computed after
zero-padding the missing (not sampled) k−space lines, and then we have [42]:

σ2
l =

1

|Ω| · rσ
2
Kl
.

In the latter case the noise power is reduced with respect to the fully sampled case,
since we average exactly the same number of samples but only 1 of each r of them
contributes a noise sample (this will also be the case with GRAPPA), see Table 1 for
a more thorough description. Finally, note that although the level of noise is smaller
in GRAPPA due to the zero padding, the SNR does not increase, due to a reduction
of the level of the signal.

3.1 Statistical model in GRAPPA reconstructed images

GRAPPA estimates the missing lines in a subsampled k−space by linear interpo-
lation of the complex data [30, 33, 34]. While the sampled data sSl (k) remain the
same, the reconstructed lines sRl (k) are estimated through a linear combination of
the existing nearby samples from all the available coils. Given a neighborhood η(k)
of k, the interpolation reads:

sRl (k) =

L∑

m=1

∑

c∈η(k)

sSm(k− c)ωml(c), (14)

where ωml(c) is a complex coefficient weighting the contribution of the measured
signal at the m-th coil in the interpolation of a missing line at the l-th coil, given
an offset c between the measured and the missing samples. These coefficients are
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Noise relations
k-space Parameters x-space Relation

Fully sampled,
σ2
Kl

k-size: |Ω|

σ2
l = 1

|Ω|σ
2
Kl

,
x-size: |Ω|

Subsampled r,
σ2
Kl

k-size: |Ω|/r

σ2
l = r

|Ω|σ
2
Kl

,
x-size: |Ω|/r

Subsampled r,
σ2
Kl

k-size: |Ω|
(zero padded)

σ2
l = 1

|Ω|·rσ
2
Kl

,
x-size: |Ω|

Table 1 Relations between the variance of noise in complex MR data for each coil in the k-space
and the image domain.

learnt from the low-frequency spectrum (as it will show the highest SNR), the so-
called Auto Calibration Signal (ACS) lines, which are sampled at the Nyquist rate.
Breuer et al. in [51] pointed out that eq. (14) can be rewritten using the convolution
operator:

sRl (k) =

L∑

m=1

sSm(k) ~ wml(k), (15)

where wml(k) is a convolution kernel that can be easily built from the GRAPPA
weights ωml(k). For the sake of simplicity in the analysis, these weights are usu-
ally considered as constant (non-stochastic). Since a (circular) convolution in the
k-space is equivalent to a product in the image domain, we can write:

SRl (x) = |Ω|
L∑

m=1

SSm(x)×Wml(x) (16)

= |Ω|
L∑

m=1

ASm(x)×Wml(x)

︸ ︷︷ ︸
Reconstructed Signal

+ |Ω|
L∑

m=1

Nm(σ2
n)×Wml(x)

︸ ︷︷ ︸
Gaussian Noise

(17)

= ARl (x) +NRl (x), (18)
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with Wml(x) the 2D iDFT of wml(k). This result assumes the signal plus noise
model in each coil used in the previous section, a Cartesian sampling of the k-
space, and the GRAPPA weights are considered as constant (non-stochastic). The
first important conclusion is that the noise power at each image location x will be
different, since Wml(x) is spatially variant. Since the convolution in eq. (15) is
again a linear operator, the noise in the image domain is still an AWGN process. In
addition, even assuming that the coils are initially independent, the signals SRl (x)
will become correlated when the signals from each coil are mixed through ωml(c).

The composite magnitude image ML(x) can be obtained using SoS as shown in
eq. (9). Following a similar reasoning to the one for fully sampled correlated coils,
we can conclude that the resultant distribution is not strictly a nc-χ. Again, it can be
modeled as such with a small error if effective values are taken into account [42]:

Leff(x) =
A2
T tr

(
C2
X

)
+
(
tr
(
C2
X

))2

A∗ C2
X A + ||C2

X ||2F
; (19)

σ2
eff(x) =

tr
(
C2
X

)

Leff
, (20)

where C2
X(x) = W(x) Σ W∗(x) is the covariance matrix of the interpolated data

at each spatial location; A(x) = [AR1 (x), AR2 (x), · · · , ARL (x)]T is the noise-free

reconstructed signal; A2
T (x) =

L∑
i=1

|ARi (x)|2, and W(x) is a matrix arranged by

the set of complex weights Wml(x):

W(x) =




W11(x) W12(x) · · · W1L(x)
W21(x) W22(x) · · · W2L(x)

...
...

. . .
...

WL1(x) WL2(x) · · · WLL(x)


 . (21)

The reduced number of DoF in the nc-χ model is originated by the correlation
and inhomogeneous variance of the complex Gaussians, i.e. by C2

X . In GRAPPA,
this artifact mainly comes from the interpolation matrix W and not from the covari-
ance matrix Σ.

Summarizing, the nc-χ model does not hold for GRAPPA reconstructed data.
However, this distribution can be used as a good approximation of the actual one.
For this approximation to hold, effective parameters have to be considered which
represent an equivalent, non-subsampled configuration with a smaller number of
coils (DoF) and, consequently, a greater level of noise. Note the effective parame-
ters Leff and σ2

eff are signal dependent (hence spatial-dependent), which is further
discussed in the next section.
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Fig. 3 Example of the SENSE interpolation for 8 coils and an acceleration factor r = 2.

3.2 Statistical model in SENSE reconstructed images

Most of the noise related studies in SENSE are usually done from a SNR or a g-
factor (noise amplification) point of view [32, 34]. In what follows we present an
equivalent reformulation, implicit in previous studies [43, 52, 46] but more coherent
with the signal and noise analysis done for the other modalities reviewed in this
paper.

For the sake of simplicy, let us assume that SENSE [32] is only be applied to
MRI data regularly subsampled by a factor r. The reconstruction takes place in the
image domain. Assuming an original size |Ω| = Mx ×My , the subsampled signal
SSl (x) = SSl (x, y) are the (complex) Fourier inverse transform of sSl (k), of size
Mx × (My/r) .

In multiple coil scanners, the image received in coil l-th, Sl(x, y), can be seen as
an original image S0(x, y) weighted by the sensitivity of that specific coil:

Sl(x, y) = Cl(x, y)S0(x, y), l = 1, · · · , L (22)

An accelerated pMRI acquisition with a factor r will reduce the matrix size of the
image at every coil. The signal in one pixel at location (x, y) of l-th coil can be now
written as [34]:

Sl(x, y) = Cl(x, y1)S0(x, y1) + · · ·+ Cl(x, yr)S0(x, yr) (23)

In SENSE, the reconstructed image SR(x, y) can be seen as an estimator of the orig-
inal image SR(x, y) = Ŝ0(x, y) that can be obtained from eq. (23). For instance,
for r = 2 for pixel (x, y), SR(x, y) is obtained as

[
SR1
SR2

]
=
[
W1 W2

]
×
[
SS1 · · · SSL

]
. (24)

An example for 8 coils and r = 2 is depicted in Fig. 3. In matrix form for each
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output pixels an arbitrary r

SRi = Wi × SS i = 1, · · · , r. (25)

SR = W × SS , (26)

with W(x, y) = [W1, · · ·Wr] a reconstruction matrix created from the sensitivity
maps at each coil. These maps, C(x, y) = [C1, · · · ,CL] are estimated through
calibration right before each acquisition session. Once they are known, the matrix
W(x, y) reduces to a least-squares solver for the overdetermined problem C(x, y)×
SR(x, y) ' SS(x, y) [32, 34]:

W(x, y) = (C∗(x, y)C(x, y))−1C∗(x, y). (27)

The correlation between coils may be incorporated in the reconstruction as a pre-
whitening matrix for the measurements, and W(x, y) becomes then a weighted least
squares solver with correlation matrix Σ:

W(x, y) = (C∗(x, y)Σ−1C(x, y))−1C∗(x, y)Σ−1.

The SNR of the fully sampled image and the image reconstructed with SENSE are
related by the so-called g-factor [52, 34]:

SNRSENSE =
SNRfull√
r · g (28)

However, we will focus on the actual noise model underlying the SENSE re-
construction and on the final variance of noise. The final signal for each of the r
reconstructed pixles, SRi , is obtained as a linear combination of the samples in each
coil, SSl , where the noise is Gaussian distributed. Thus, the resulting signal is also
Gaussian, with variance:

σ2
i = W∗

iΣWi. (29)

Since Wi is position dependent, i.e. Wi = Wi(x, y), so will be the variance of
noise, σ2

i (x, y). For further reference, when the whole image is taken into account,
let us denote the variance of noise for each pixel in the reconstructed data by σ2

R(x).
Note now that all the lines SRi reconstructed from the same data SSl will be

strongly correlated, since they are basically different linear combinations of the
same Gaussian variables. In that case, the covariance between SRi and SRj , i 6= j
can be calculated as

σ2
i,j = W∗

iΣWj , (30)

and the correlation coefficient is derived straight forward:

ρ2
i,j =

σ2
i,j

σiσj
=

W∗
iΣWj√

(W∗
iΣWi)

(
W∗

jΣWj

) , (31)
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However, each r correlated lines are far enough within the final image, so we can
neglect this correlation effect for processing purposes. In other pMRI modalities
that carry out the interpolation in the k-space, such as GRAPPA, there will also
be spatial correlations. However, the iDFT will sparsely distribute them among the
entire image domain, considerably reducing their impact when compared to those
in x-space reconstruction methods. Accordingly, they are usually left aside.

All in all, noise in the final reconstructed signal SR(x) will follow a complex
Gaussian distribution. If the magnitude is considered, i.e. M(x) = |SR(x)|, the
final CMS will follow a Rician distribution, just like single-coil systems.

We can summarize our developments as follows:

1. Subsampled multi coil MR data reconstructed with Cartesian SENSE follow a
Rician distribution at each point of the image.

2. The resulting distribution is non-stationary. This means that the variance of noise
will vary from point to point across the image.

3. The final value of the variance of noise at each point will only depend on the
covariance matrix of the original data and on the sensitivity map.

4. Each pixel in the final image will be strongly correlated with all those pixels
reconstructed from the same original data. Each pixel is correlated with r − 1
other pixels. Due to the distance between correlated pixels, this correlation may
be left aside.

For the particular case in which there is no initial correlation between coils and
all the coils have the same noise variance σ2, we can write eq. (29) as:

σ2
i = σ2 × |Wi|2. (32)

Since σ2 is the noise variance of the subsampled data in the image domain, accord-
ing to eq. (5), it is related to the original noise level without subsampling, say σ2

0 ,
by the subsampling rate:

σ2 = r · σ2
0 ,

and therefore
σi =

√
r · σ0 × |Wi|, (33)

which is totally equivalent to the formulations for SNR reduction in literature [32,
43].

4 Spatial variation of the noise distribution parameters: Noise
maps

We have concluded in the previous sections that the noise pattern in certain multiple-
coil systems may show spatially-variant, or even signal-dependent distributions. The
origin of this artifact may be the initial correlation (coupling) between the receiver
coils in the MRI scanner, or the reconstruction process in pMRI protocols. In all
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these cases we are interested in characterizing the variability of the parameters of
the noise distribution. From now on, the values of these parameters for each pixel at
each coil or in the final CMS will be referred to as noise maps.

4.1 Noise maps for fully sampled k−spaces from multiple
correlated coils

The existence of correlations between the noise in different coils compels using
effective parameters for the nc-χ distribution, whose value is given in eq. (13):

σ2
eff(x) =

A∗(x)ΣA(x) + ||Σ||2F
A2
T (x) + tr (Σ)

.

This magnitude depends on the signal itself, hence it is spatially variant, as it is also
the case for Leff(x). This fact makes it very difficult developing statistical models
for signal processing. On the other hand, the value of Leff or σ2

eff is usually not as
relevant as the value of their product, Leff σ

2
eff which can be found in some of the

moments of the nc-χ.
From eqs. 12 and 13, it is easy to check:

Leff(x) · σ2
eff(x) = tr (Σ) , (34)

which depends now only on Σ. In the particular case in which the variance of noise
is equal in each coil :

Leff(x) · σ2
eff(x) = L · σ2

which is similar to the uncorrelated case.
Hence, the parameter of interest is both signal-independent and spatially-invariant,

and building a noise map is worthless. On the contrary, suppose we are interested
in the individual value of σ2

l . Assuming σ2
l = σ2 is the same for every coil, the ef-

fective variance of noise becomes largely different in the background (SNR=0) and
signal (SNR→∞) areas [49]:

• Background: σ2
eff,B = σ2 (1 + 〈ρ4〉(L− 1)).

• Signal: σ2
eff,S = σ2 (1 + 〈ρ2〉(L− 1)).

with 〈.〉 the sample mean operator, so that:

〈ρn〉 =
1

L(L− 1)

∑

i6=j

ρnij .

Since ρ2
ij ∈ [0, 1], the effective variance of noise in the signal areas will be greater

or equal than in the background, i.e. σ2
eff,S ≥ σ2

eff,B . This reasoning suggests the
definition of the noise ratio as:
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Fig. 4 Noise ratio analytically computed for different numbers of coils.

Rσ =
σ2

eff,S

σ2
eff,B

=
1 + 〈ρ2〉(L− 1)

1 + 〈ρ4〉(L− 1)
(35)

For the sake of illustration, this ratio is depicted in Fig. 4 for different values of the
true L and the particular case 〈ρn〉 = ρn. Even for small values of the correlation
coefficient ρ, there is a large variability of σ2

eff between signal and background areas,
which disappears when we consider Leff · σ2

eff.

4.2 Noise maps for GRAPPA

Unlike the previous case, the GRAPPA interpolation makes the signal at each coil
non-stationary even before SoS is done. According to eq. (17), the noise at the l-th
coil in the image domain will follow a complex non-stationary Gaussian distribu-
tion, whose noise map for either the real or the imaginary component is defined
by:

σ2
l (x) = W∗

l (x) Σ Wl(x), (36)

with Wl(x) = [W1l(x), · · · ,WLl(x)]T . If there are no initial correlations between
coils, this equation simplifies to:

σ2
l (x) =

L∑

m=1

σ2
m|Wml(x)|2. (37)

This noise map does not depend on the signal, but on the original covariance matrix
and on the GRAPPA reconstruction coefficients. Once the SoS is taken, the effective
map of noise becomes signal dependent; from eq. (20):

σ2
eff(x) =

A∗C2
XA + ||C2

X ||2F
A2
T + tr (C2

X)
.
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If we consider now the product Leff σ
2
eff in the nc-χ distribution, eqs. 19 and 20 show

that this parameter is at least signal-independent. As opposed to the fully sampled
case, this product is indeed spatially variant, hence it makes sense defining a noise
map:

Leff(x) · σ2
eff(x) = tr

(
C2
X(x)

)
.

4.3 Noise maps for SENSE

After SENSE reconstruction, the final signal follows a non-stationary complex
Gaussian, which becomes a Rician when its magnitude is taken. Thus, the same
parameters and noise maps can be considered for both. The final noise map will
follow eq. (29):

σ2
i (x) = W∗

i (x) Σ Wi(x) i = 1, · · · , r.

The noise map in SENSE does not depend on the signal, but only on the original
covariance matrix and on the sensitivity maps of the coils. This means that, knowing
the sensitivity maps and the acceleration rate beforehand, it is possible to predict the
output noise map for SENSE.

In addition, note that in the case of SENSE, the noise map is not the only in-
teresting noise-related map to take into account. Due to the reconstruction process,
there will be a high correlation between adjacent lines. A correlation map can also
be defined following eq. (31).

4.4 Some practical examples

Fig. 5 MR data used for illustration: Top: Synthetic 8-coil acquisition with correlated noise. Bot-
tom: Actual brain imaging acquisition from a GE Signa 1.5T scanner with 8 coils.

In this section we will show some of the noise maps previously defined. For the
sake of illustration, two different data sets will be considered:
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Fig. 6 Sensitivity Maps used for the experiments. Top: Synthetic sensitivity map created so that
the SoS of the maps gives a constant image. Bottom: Sensitivity map estimated from an actual
brain imaging acquisition in a GE Signa 1.5T scanner with 8 coils.

1. In order to know before hand all possible parameters such as Σ, number of coils,
Ai and so on, a synthetic phantom mimicking a parallel acquisition will be used,
as shown in Fig. 5. The starting point is a 2D synthetic slice A0(x) in the image
domain from the BrainWeb MR volume [53], with intensity values in [0, 255].
The average intensity value for the White Matter is 158, for the Gray Matter is
105, for the cerebrospinal fluid 36 and 0 for the background. An 8-coil system is
simulated using an artificial sensitivity map coded for each coil so that A2

T (x) =∑8
l=1 |Al(x)|2 = A0(x), as shown in Fig. 6 (top). The image domain for each

coil is corrupted with complex Gaussian noise with σ2
l = 100 and a correlation

coefficient of ρ2 = 0.05 between all coils, so that:

Σ = 100×




1 0.05 · · · 0.05
0.05 1 · · · 0.05

...
...

. . .
...

0.05 0.05 · · · 1


 .

2. A real T1 acquisition of a brain, as shown in Fig. 5, done in a GE Signa 1.5T
EXCITE, FSE pulse sequence, 8 coils, TR=500 msec, TE=13.8 msec, image
size 256 × 256 and FOV: 20cm×20cm. We will consider the sensitivity maps
estimated by the scanning software, see Fig. 6 (bottom).

First we will consider the fully sampled case (FS) for the synthetic data, using
SoS to calculate the CMS. Using eq. (12) and eq. (13) we can calculate the maps
for σeff(x) and Leff(x), we show them in Fig. 7-(a) and 7-(b). There are basically
two different areas to take into account: the background area and the signal area.
The background has a smaller level of noise than the signal. The product between
the two maps is a constant value for the whole image:

σ2
eff(x) · Leff(x) = tr(Σ) = σ2

l · L = 100× 8,

as shown in Fig. 7-(c). From the same data in each coil, the k-space is subsampled
using an acceleration rate r = 2, keeping 32 ACS lines for calibration, and GRAPPA
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Fig. 7 Maps of noise for the synthetic example. (a) Effective noise map for the fully sampled
case. (b) Effective number of coils for the fully sampled case. (c) The map of

√
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2
eff(x)

for the fully sampled case. (d) Effective noise map for the GRAPPA reconstruction. (e) Effective
number of coils for the GRAPPA reconstruction. (f) The map of

√
Leff(x)σ

2
eff(x) for GRAPPA

reconstruction. (g) Noise map for SENSE reconstruction. (h) Coefficient of correlation for the
SENSE reconstruction.

is used for reconstruction. The final CMS is obtained using SoS. Again, we can
calculate the maps for noise and number of coils using eq. (20) and eq. (19). Results
for GRAPPA are shown in Fig. 7-(c) and 7-(d). Note that there is a great range of
values for σeff(x), mainly due to the GRAPPA coefficients. Most of the background
lies in values around 10, while there are signal areas with levels of noise around 45.
In addition, the background and the signal do not show a pattern as regular as the
FS case. The product σ2

eff(x) · Leff(x) for GRAPPA will not be a constant either,
but a map with different values for different x. The advantage of this product is that
it does not depend on the signal, but only on the reconstruction coefficients and on
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the original covariance matrix. In Fig. 7-(e) we show the map for the synthetic data,
and in Fig. 8-(a) the same map is calculated for the real acquisition. For the real
acquisition we have just used the GRAPPA coefficients and assumed a Σ matrix
like the one in the synthetic experiment. (There are methods allowing the estimation
of the actual Σ, but for the sake of illustration and comparison we will consider the
same for the two experiments).

Fig. 9 Synthetic example: σl(x), map of noise in each coil for GRAPPA before SoS.

Fig. 10 Real acquisition: σl(x), map of noise in each coil for GRAPPA before SoS.

Even assuming the same Σ matrix, note that the resultant map differs from the
two cases, which gives an idea of the great influence of the GRAPPA coefficients
over the final distribution of noise. Using eq. (36) we can also calculate the variance
of noise of the complex Gaussian distributions in each coil before the SoS. They are
depicted in Fig. 9 (synthetic data) and in Fig. 10 (real acquisition).

Finally, the k-space is again subsampled using an acceleration rate r = 2, and
SENSE is used for reconstruction using the sensitivity maps of each of the data sets.
Results for σR(x) and ρ2

i,j(x) are shown in Fig. 7-(f) and 7-(g)(synthetic data) and
in Fig. 8-(b) and 8-(c) (real acquisition). Note that the uniformity of the noise map
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depends highly on the sensitivity maps. For the synthetic case, the levels of noise
take values in a small range. Thus, with a small error, we can assume the noise to
be stationary, and work as if it were a single coil acquisition. However, for the real
acquisition, the range of values is broader.

5 Discussion

While many of the features previously discussed for the noise pattern in MRI are
well known, many other are not equally familiar to the image processing commu-
nity. In this section we briefly discuss some important implications of the properties
explained before, and provide useful guidelines for the design of image processing
pipelines involving the statistical characterization of noise in MRI. The discussion
is divided in three blocks corresponding to the voxel-wise (first order) statistics, the
spatially variant noise patterns, and the spatial correlations (second order statistics),
each of them arising challenging problems in image processing tasks such as image
denoising, quantitative diffusion MRI, functional MRI, perfusion MRI, and others.

5.1 The Rician and nc-χ models in voxel-wise statistics

The Rician distribution has been widely accepted in the MRI literature as a suitable
model for the noise in magnitude images [5]. In spite of this, the complexity of
Rician statistics has favored the approximation of this distribution with Gaussian
functions. This simplification is justified as long as for large SNRs both distributions
are virtually identical. The main advantage of the Gaussian approximation relies on
the huge background on image processing techniques based on this model. In a
statistical sense, Gaussian corrupted signals fulfill two useful properties:

E{M(x)} = AT (x); (38)
E{(M(x)−AT (x))2} = σ2, (39)

i.e. the expected value of the observation equals the magnitude of interest itself,
and the expected value of the estimation error does not depend on the actual signal
AT (x). This behavior does not hold for Rician-distributed signals, for which we
have:

E{M(x)} =

√
π

2
L1/2

(
−AT (x)2

2σ2

)
σ, (40)

with Ln(x) = 1F1(−n; 1;x), and the estimation error in this case does depend on
the actual value of AT (x). The use of the Gaussian approach to estimate the value
AT (x) will introduce a systematic error (bias) in the estimation, which will decrease
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when AT (x) � σ. Though this bias does not have an impact on the visual assess-
ment of MRI volumes for diagnostic purposes, it will negatively affect quantitative
modalities such as diffusion, perfusion, or functional MRI, especially when the SNR
is decreased. One very illustrative example is the case of diffusion MRI. In the DWIs
image intensities are lower for those gradient directions aligned with the major di-
rections of diffusion. This means that the relevant information is coded in low SNR
areas, for which M(x) is systematically greater than AT (x) and the diffusivity will
be underestimated. This effect is even more noticeable in High Angular Resolution
DWI (HARDI), where the sensitizing gradients are typically stronger and the SNR
is dramatically worsened due to the diffusion-induced attenuation [54].

Many authors have pointed out before this consideration, introducing the Rician
statistics in the estimation of diffusion models [17, 55], curve fitting for quantitative
perfusion measurements [56, 57, 58], hypothesis tests to assess the activation level in
functional MRI [24, 25], or in a preprocessing (denoising) step to get rid of the afore-
mentioned bias for the subsequent processing stages [48, 59, 60, 61]. These methods
are usually based on non-linear, iterative procedures to recover AT (x) from M(x)
in eq. (40), or they alternatively use the Rician distribution in eq. (7) to estimate
AT (x) from noisy measurements. This complexity can be reduced by alternatively
considering the squared magnitude signal, whose relation with the squared original
signal is linear [4]:

E{M2(x)} = A2
T (x) + 2σ2.

The so-called CA implies the actual signal can be directly computed from the ex-
pected value of the squared magnitude signal by simply subtracting the bias term:

AT (x) =
√
E{M2(x)} − 2σ2, (41)

which has been intensively used in the MRI denoising literature [9, 11, 12, 13, 62].
On the other hand, the nc-χ model is not equally popular in the literature (see

Table 2), despite of the fact that it has been proved a suitable model for many multi-
ple coils systems, for example those using GRAPPA reconstruction. In these cases,
using Rician statistics may lead to great errors [10, 50], and yet a Gaussian distri-
bution might be a preferable model. Nevertheless, for multiple coil systems, both
Rician and Gaussian models will cause a certain bias to appear in the estimation of
AT (x), since the expected value of the magnitude signal is not equal to the magni-
tude to estimate:

E{ML(x)} =

√
π

2
LL−1

1/2

(
−AT (x)2

2σ2

)
. (42)

The biases induced by nc-χ signals are typically larger due to the combined effect
of all the Gaussian sources (effective coils), and they are also dramatically increased
when the data sets exhibit a poor SNR [15]. In this case the CA can be easily ex-
trapolated [50]:

E{M2
L(x)} = A2

T (x) + 2Lσ2 ⇒ AT (x) =
√
E{M2

L(x)} − 2Lσ2, (43)
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Fig. 11 1D example of estimation of AT using different models.

while quantitative methods based on the non-squared magnitude signal for diffu-
sion MRI [17, 55], perfusion MRI [56, 57, 58], functional MRI [24, 25], and oth-
ers [48, 59, 60, 61] need a deeper reformulation. As a matter of fact, the popular
Weighted Least Squares method for diffusion tensor estimation is still usable with
nc-χ signals [15]. As described in Section 2.4, L and σ have to be replaced by
their corresponding effective values in case that correlations between coils and/or
GRAPPA interpolation are considered (and the nc-χ model becomes then an ap-
proximation). This consideration adds an extra layer of complexity to the problem,
since neither Leff nor σeff are known beforehand in general, and they must be esti-
mated. Fortunately, the product Leffσ

2
eff is typically the relevant magnitude, since it

accounts for the total amount of noise in the magnitude image instead of the inde-
pendent contribution of each coil separately. Consider for example eq. (43), which
will translate into:

AT (x) =
√
E{M2

L(x)} − 2Leff(x) · σ2
eff(x) =

√
E{M2

L(x)} − 2tr (Σ), (44)

Indeed, it is usually simpler estimating Leffσ
2
eff from a noisy data set than it is as-

sessing each of them isolated, in a way that the estimation problem has a similar
complexity to the one in the Rician case (although the equations involved are com-
pletely different, see the review in [47]).

As an illustration of how a mismatch in the choice of the noise model can affect
the estimation, see Fig. 11. 500 samples of two 1D random signals were gener-
ated, following a Rician and a (non correlated) nc-χ distribution, with AT = 1 and
σi = 0.8. The signal value AT is estimated using eq. (38), eq. (41) and eq. (44),
respectively assuming a Gaussian, Rician and nc-χ model. Note that since we are
working in a low SNR scenario, the mismatch between the chosen model and the
real data yields to a bias in the estimation of the actual signal value.
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5.2 Noise non-stationarity and noise maps

The main assumption for single coil Rician acquisitions is that the noise is station-
ary, and therefore a single value of σ characterizes the whole data set. This premise
is extensible to multiple coils systems if the correlations between the receiving coils
are neglected. In this case, two unique values of L and σ equally describe the noise
properties at all imaged voxels. In case appreciable correlations do exist, however,
the model has to be redefined in terms of effective nc-χ parameters that are spa-
tially variant. The noise map for the synthetic example in Fig 7-(a) illustrates the
great mismatch of noise values between the signal and background areas. Addi-
tionally, Leff and σeff are not only spatially dependent but also signal-dependent.
Fortunately, the product Leffσ

2
eff (the overall noise contribution for all coils) is con-

stant, thus signal-independent, for the whole image domain. As previously stated,
this means that most of the quantitative MRI techniques based on local moments
computations will be equally valid for single and multiple coils systems whenever
fully sampled k−spaces are acquired. For example, in eq. (44) Σ is a constant.

Parallel reconstructions from partially sampled k−spaces raise more serious is-
sues. The non-stationarity is even more severe, and signal-dependent artifacts are
also present. In this paper we have analyzed the effect of GRAPPA and SENSE
over the noise in the final CMS, but a similar study can be carried out for other tech-
niques, such as SMASH, PILS or non-Cartesian SENSE [30, 34]. With SENSE, the
noise map mainly depends on the original level of noise and the sensitivity map
of each coil. The corresponding map σ(x) provides an estimation of how far from
the Rician stationary case we are. In the synthetic example previously presented in
Fig. 7-(f), for instance, the assumption that σ is constant for the whole image will
not produce a great error, while it will considerably simplify the computations.

With GRAPPA, both the initial correlations between coils and the reconstruc-
tion interpolation favor the appearance of signal-dependent noise. Contrary to the
fully sampled case, considering Leff(x) · σ2

eff(x) = tr
(
C2
X(x)

)
will not remove

the spatial variability. Even so, tr
(
C2
X(x)

)
depends only on Σ and the GRAPPA

reconstruction coefficients, so that Leffσ
2
eff is at least signal independent and hence

easier to work with [63].
The actual impact of the non-stationarity of noise in quantitative MRI will depend

on whether the processing needs a prior estimation of the distribution parameters.
For example, ML estimators for Rician PDFs can embed the assessment of σ at
each voxel themselves [17]. The most of the algorithms for the estimation of diffu-
sion MRI models are run voxel by voxel, and they do not require the actual knowl-
edge of the noise distribution, mainly because they assume an underlying Gaussian
distribution of noise [14, 15, 55, 64]. In all these cases, the non-stationarity is not
a serious issue as long as the computations involve a unique voxel or a neighbor-
hood small enough to consider an approximately homogeneous noise distribution
whose parameters are not relevant. On the contrary, other diffusion MRI methods
include some sort of spatial regularization, and in this case the spatial variability
of noise urges a reformulation [22]. In other quantitative methods based on Rician
statistics, though they treat each voxel independently, the computations require a
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prior knowledge of the noise power; hence they will suffer from noise inhomo-
geneities [24, 25, 56, 57, 58]. This is the case also for denoising and other local
moments-based techniques [9, 10, 11, 12, 13, 48, 60, 61, 62]: local moments are
computed as sample estimates in a small neighborhood, mixing up noise samples
with different statistical properties. Luckily, noise maps are smooth enough, so that
the variability of the distributions parameters can be considered negligible inside
those neighborhoods. In any case, the statistical model used for denoising must vary
across the image voxels, as it may be checked from one of the simplest cases in
eq. (44).

With these considerations, we may conclude that most of the quantitative tech-
niques in MRI may be generalized to the non-stationary case once a proper estimate
of the spatial map of distribution parameters is known. Accordingly, the problem
of properly estimating σ(x) (or Leff(x) and σeff(x)) earns a capital importance
over the remaining applications. Many methods have been proposed for noise esti-
mation, most of them showing a very good performance in terms of accuracy and
low variance of the estimates [47]. Unfortunately, they usually assume a station-
ary pattern, hence they do not directly apply to those noise models accounting for
non-stationarity.

Certain works have appeared addressing the different properties of noise in signal
and background areas (especially when the latter are artificially removed), but they
still estimate individual noise parameters for the entire MRI volume [8, 65, 66].
There have been proposals to carry out a rough estimation of non-stationary noise
maps assuming a Rician models. However, most of these approaches require extra
information beyond the simple magnitude signal: multiple acquisitions or different
signals are required ([67, 68, 69]), a biophysical model must be defined ([69]), or
even acquisition information such the estimated sensitivity of the coils is needed
([70]). This need of extra information has supposed a drawback in the usage of
more complex noise models. Recently, there have been some novel proposals to
estimate these non-homogeneous maps of noise out of a single image, not only in
the MRI context. The most usual approaches are based on wavelet decomposition or
local moments[71, 72, 73, 68, 74], on a homomorphic decomposition of the nosie
components [75]. Similar efforts can be found for GRAPPA [70, 76, 77].

As a summary of this section, the traditional noise estimation methods will
work “as they are” for single- and multiple-coils systems without subsampling or
inter-coil noise correlations. For the other scenarios, some reformulations will be
required. We have presented here how to predict the spatial pattern of noise pa-
rameters, so that the complexity of noise estimation may be dramatically reduced
from the model-free approaches in [78, 73] to a problem where only one degree of
freedom has to be estimated. In order to predict the spatial patterns, we need to a
priori model, for SENSE, the sensitivity maps of each coil (which is inherent to
this method), meanwhile with GRAPPA we need to characterize the interpolation
weights. Once the maps are derived, local moments-based estimators of noise may
be generalized by embedding a regularization step based on the prior knowledge of
the spatial patterns.
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Model Application References
Rician Signal and noise models [5, 44, 79]

Noise Estimation [7, 8, 37, 47, 80, 81, 82, 83, 84, 66, 65, 78,
85]

Noise Filtering [4, 7, 9, 11, 12, 13, 80, 82, 86, 87, 88, 89, 6,
59, 62, 73, 90, 91, 92]

Segmentation [20, 21, 37, 93]
Gaussian Correction [48, 60, 61, 55]
Diffusion Tensor Esti-
mation

[14, 16, 18, 19, 23]

fMRI [24, 25]
Perfussion Analysis [56, 57, 58]

nc-χ Signal and noise models [27, 49, 46]
Noise Estimation [27, 46, 47, 48, 94, 50, 95, 77]
Noise Filtering [10, 48, 96, 97, 50]
Gaussian Correction [48, 60]
Diffusion Tensor Esti-
mation

[15]

GRAPPA Signal and noise models [33, 42, 43, 51]
Noise Estimation [63, 70, 76, 77]
Noise Filtering [50]

SENSE Signal and noise models [32, 43, 35]
Noise Estimation [69, 70, 72, 98, 99, 100, 101, 67, 68, 75]
Noise Filtering [99, 100, 102]

Table 2 Some examples of usage of the models proposed in this paper. Most of them have been
focus of the stationary Rician model.

To sum up, in Table 2 we summarize some of the different applications in liter-
ature that make use of the statistical models reviewed in this paper. Note that, from
a practical point of view, most of the authors have assumed a simple Rician model
for most applications, while procedures that take into account pMRI statistics are
scarce. This gives a global idea of the potential of future research in MRI modeling,
since the amount of unfinished problems is still large.

6 Conclusion

The proper modeling of the statistics of thermal noise in MRI is crucial for many
image processing and computer aided diagnosis tasks. While the stationary Rician
model has been the keystone of statistical signal processing in MR for years, nei-
ther the stationarity assumption nor the Rician distribution are always valid. The
deviations of the actual statistics of noise with respect to the traditional model will
imply very different outcomes depending on the final application, as we describe in
the previous section. As a consequence, each application will need a careful choice
for a proper and realistic model for the data sets at hand, attending to the need for



Statistical noise models for Magnetic Resonance Imaging 29

modeling the actual voxel-wise PDF and/or the spatial distribution of its parameters
and possible second-order artifacts (noise correlations).

The existing models for noise statistics surveyed in this paper are suitable for
many MRI acquisition sequences, as long as the k−space is formed by Carte-
sian sampling, the phase-encoded lines independently acquired, and the image do-
main retrieved by means of a linear operator. On the contrary, single-shot acquisi-
tion sequences like EPI require post-processing schemes, ghost-correction, and oth-
ers [28, 29]. Further post-processing stages may include customary noise reduction
systems or corrections to the sensitivity inhomogeneities. In all these cases, large
deviations of the noise statistics and the correlation between samples with respect
to the AWGN model will appear. This might be the case also for the emerging tech-
niques beyond pMRI, like non-linear GRAPPA [103] or compressed sensing-based
reconstructions [104, 105, 106]. Even when the k−space was contaminated with
AWGN, the retrieval of the image domain is in these cases heavily non-linear, so
that the Rician or nc-χ models are not necessarily appropriate.

Finally, in Table 3 a survey of the different models reviewed in this paper is
carried out.

Composite Magnitude Signal
Number of
coils

Acquisition Statistical
Model

Stationarity Parameters

1 coil Single coil Rician Stationary σ2

Multiple coils No subsampling +
SoS

nc-χ Stationary σ2

(Uncorrelated) L (Number of
coils)

Multiple coils No subsampling +
SoS

nc-χ (approx.) Non-stationary σ2
eff(x)

(correlated) Leff(x)
Multiple coils pMRI + SENSE Correlated Ri-

cian
Non-stationary σ2

R(x)

ρ2i,j(x)

Multiple coils pMRI +
GRAPPA+ SoS

nc-χ (approx.) Non-stationary σ2
eff(x)

Leff(x)

Table 3 Survey of noise models in the final composite magnitude signal for different acquisition
schemes.





Influence of Noise Correlation in Multiple-Coil
Statistical Models with Sum of Squares
Reconstruction

Santiago Aja-Fernández, Antonio Tristán-Vega∗

Abstract Noise in the composite magnitude signal (CMS) from multiple-coil sys-
tems is usually assumed to follow a noncentral χ distribution when Sum of Squares
(SoS) is used to combine images sensed at different coils. However, this is true only
if the variance of noise is the same for all coils, and no correlation exists between
them. We show how correlations may be obviated from this model if effective values
are considered. This implies a reduced effective number of coils and an increased ef-
fective variance of noise. In addition, the effective variance of noise becomes signal-
dependent.

1 Introduction

The noncentral χ (nc-χ) distribution has been extensively used to model the noise in
MRI when the signals at different receiving coils are combined as the Sum of their
Squares (SoS) [27, 46, 47, 107, 48]. However, this Composite Magnitude Signal
(CMS) will only show nc-χ statistics if the variance of noise is the same for all
coils, and no correlation exists between them. Although it is well known that in
phased array systems noise correlations do exist [38, 39, 40, 41], the effect of noise
correlations has been usually left aside due to their minimal effect and practical
considerations, as stated in [27]. With the break-up of modern acquisition systems
comprising up to 32 or 64 coils this simplification is at stake.

We study here how correlations effect the nc-chi model, and under what as-
sumptions this approximation is still valid. The deviations from ideal statistics with
GRAPPA reconstructions due to k-space interpolation artifacts have been studied in
a recent paper [42]. We [the authors] concluded that the divergence with respect to

∗ This chapter was previously published as: S. Aja-Fernández, A. Tristán-Vega, “Influence of
Noise Correlation in Multiple-Coil Statistical Models with Sum of Squares Reconstruction” Mag-
netic Resonance in Medicine,67(2), pp. 580585, 2012.
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the ideal demeanor can be obviated with the introduction of certain effective statis-
tics. In a similar fashion, we show in the current paper how inter-coil correlations
can be modeled by means of an effective (increased) number of coils and an effective
(decreased) noise variance. The resulting model accurately fits the actual statistics
found in real data sets [46].

2 Theory

2.1 Statistical Model in Multiple–Coil MR signals

The k-space data at each coil can be accurately described by an Additive White
Gaussian Noise (AWGN) process, with zero mean and variance σ2

K :

sl(k) = al(k) + nl(k;σ2
K), l = 1, · · · , L (1)

with al(k) the noise-free signal and nl(k;σ2
K) = nlr (k;σ2

K) + jnli(k;σ2
K) the

AWGN process, which is initially assumed stationary so that σ2
K does not depend

on k. The complex x-space is obtained as the inverse Discrete Fourier Transform
(iDFT) of sl(k) for each slice or volume, so the noise in the complex x-space is still
Gaussian:

Sl(x) = Al(x) +Nl(x;σ2
n), l = 1, · · · , L

where Nl(x;σ2
n) = Nlr (x;σ2

n) + jNli(x;σ2
n) is also a complex AWGN process

(note we are assuming that there are not any spatial correlations) with zero mean
and covariance matrix Σ. If the k-space is fully sampled, SoS can be directly used
to recover the MRI [27, 38]:

ML(x) =

√√√√
L∑

l=1

|Sl(x)|2. (2)

In the same fashion as [42], we consider M2
L(x) instead, and distinguish two differ-

ent scenarios regarding the covariance matrix Σ:

1. In the ideal scenario, the variance of noise at each coil is the same, and no corre-
lations exist: Σ is therefore diagonal with identical eigenvalues:

Σ = σ2
n · I

where I is the L × L identity, σ2
n = 1

|Ω|σ
2
K is the original variance of noise and

|Ω| is the number of points used to compute the iDFT. Since the variance of noise
is the same for all coils and they are uncorrelated, M2

L(x) follows a noncentral
χ2 (nc-χ2) distribution [45] with Probability Density Function (PDF):
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pX(x|AT , σn, L) =
A1−L
T

2σ2
n

x
1
2 (L−1)e

− x+A
2
T

2σ2n IL−1

(
AT
√
x

σ2
n

)
u(x), (3)

with A2
T (x) =

L∑
l=1

|Al(x)|2, IL(.) the Lth order modified Bessel function of the

first kind, and u(.) the Heaviside step function. In the background, this PDF sim-
plifies to a central χ2 (c-χ2). The mean and the variance of the nc-χ2 distribution
are:

E{M2
L} = A2

T + 2σ2
nL (4)

Var{M2
L} = 4A2

Tσ
2
n + 4Lσ4

n. (5)

2. In the general case, Σ is an arbitrary, symmetric, positive definite matrix:

Σ =




σ2
1 σ12 · · · σ1L

σ21 σ2
2 · · · σ2L

...
...

. . .
...

σL1 σL2 · · · σ2
L


 ,

the off-diagonal elements standing for the correlations between each pair of coils.
Though the corresponding PDF cannot be theoretically derived, the mean and
variance are easily computed as [42]:

E{M2
L(x)} = A2

T + 2 tr (Σ) ; (6)
Var{M2

L(x)} = 4 A∗ΣA + 4 ||Σ||2F . (7)

with ||.||F the Frobenius norm and A = [A1, A2, · · · , AL]T .

This case will be found in coils systems where correlations do exist. As a conse-
quence, the actual PDF is not strictly a nc-χ2, though for small correlations it is
expected that such model remains approximately valid. Correlations will affect the
number of Degrees of Freedom (DoF) of the distribution. To deduce an effective
nc-χ2 PDF, we use the method of moments: eqs. 4 and 5 are respectively equated
to 6 and 7 to solve for the following effective parameters:

Leff =
A2
T tr (Σ) + (tr (Σ))

2

A∗ΣA + ||Σ||2F
; (8)

σ2
eff =

tr (Σ)

Leff
. (9)

2.2 Simplified scenarios

Consider the following covariance matrix:
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Σ = σ2
n ·




1 ρ12 · · · ρ1L

ρ21 1 · · · ρ2L

...
...

. . .
...

ρL1 ρL2 · · · 1


 (10)

where ρij ∈ [0, 1] is the correlation coefficient between coils i and j. We assume
that the variance of noise σ2

i = σ2
n is the same for every coil. Although this premise

might be not completely realistic, its study provides a simple, yet powerful insight
on the behavior of the true statistics with regard to noise correlations. Under this
assumption, eq. 8 and eq. 9 read:

Leff = L
A2
T + L σ2

n

A2
T + L σ2

n +
∑
i 6=j

A∗iAjρij + σ2
n

∑
i 6=j

ρ2
ij

= L
1

Cr(L)
(11)

σ2
eff = σ2

n


1 +

∑
i 6=j

A∗iAjρij + σ2
n

∑
i 6=j

ρ2
ij

A2
T + L σ2

n


 = σ2

n Cr(L) (12)

where Cr(L) can be seen as a correction factor. Since Cr(L) ≥ 1, Leff ≤ L and
σ2

eff ≥ σ2
n. As expected, noise correlations induce effective numbers of coils smaller

than the actual one. The effective variance of noise, on the contrary, is increased due
to the reduced DoF to be averaged. A further simplification is to assume Ai = Aj
for all i, j:

Leff = L

(
1 + (L− 1)

A2
T 〈ρ〉+ L σ2

n 〈ρ2〉
A2
T + L σ2

n

)−1

(13)

σ2
eff = σ2

n

(
1 + (L− 1)

A2
T 〈ρ〉+ L σ2

n 〈ρ2〉
A2
T + L σ2

n

)
, (14)

with 〈.〉 the sample mean operator, so that:

〈ρn〉 =
1

L(L− 1)

∑

i 6=j

ρnij

Results in eqs. 13 and 14 make clear that the effective values of L and σ2
n do depend

on the signal value AT (x). If A2
T (x)〈ρ〉 is comparable to L σ2

n 〈ρ2〉, i.e. the SNR
is low, the effective parameters will depend on the position x. Therefore the data
is no longer stationary, the noise power varying along with M2

L(x). Consider these
extreme cases:

1. In the background, where no signal is present and hence SNR=0, the effective
values are:
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Fig. 1 Noise ratio analytically computed for different number of coils.

Leff,B =
L

1 + 〈ρ2〉(L− 1)
(15)

σ2
eff,B = σ2

n (1 + 〈ρ2〉(L− 1)). (16)

2. For high SNR areas, say A2
T

σ2
n
→∞, we have:

Leff,S =
L

1 + 〈ρ〉(L− 1)
(17)

σ2
eff,S = σ2

n (1 + 〈ρ〉(L− 1)). (18)

Since ρij ∈ [0, 1], the effective variance of noise in the signal areas will be greater
or equal than in the background, i.e. σ2

eff,S ≥ σ2
eff,B . This reasoning suggests the

definition of the noise ratio as:

Rσ =
σ2

eff,S
σ2

eff,B
=

1 + 〈ρ〉(L− 1)

1 + 〈ρ2〉(L− 1)
(19)

For illustration this ratio is depicted in Fig. 1 for different values of the trueL and the
particular case 〈ρn〉 = ρn. The maximum is found in low values of the correlation
coefficient, meaning that the non-stationarity is more noticeable for moderately low
(but not null) values of ρ.

We can summarize our main points up to now as follows:

1. When correlation between coils is considered, the nc-χ model does not hold.
2. The nc-χ can be used as a good approximation as long as effective parameters

are considered.
3. The effective number of coils is decreased and the effective variance of noise is

increased.
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4. The final distribution is signal-dependent. Thus, the resulting distribution be-
comes non-stationary, and its parameters are spatially dependent for low SNR
and/or large numbers of receiving coils.

3 Material and Methods

3.1 Synthetic experiments

We present some experiments supporting the initial hypotheses. First, we numer-
ically validate the nc-χ approximation proposed and measure the error introduced
with this approach. The SoS of 128× 128 Gaussian correlated synthetic images are
considered. We assume 0 mean and the following covariance matrix:

Σ = σ2
n ·




1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1




with σ2
n = 1, ρ ∈ [0 − 1], and L ∈ [4, 32]. The analysis in terms of ρ is used

to characterize whether or not a nc-χ model can be accurately fitted in each par-
ticular situation (since we are considering 0 mean, it will actually be a central-χ).
In addition, note that, in this case, the assumption of ρij = ρ is irrelevant for the
experiment. Our target measure is the relative Mean Squared Error (rMSE):

rMSE =

∫
|gχ(x)− g̃χ(x)|2dx∫
|g̃χ(x)|2dx

where gχ(x) is the real distribution of the CMS obtained by SoS and g̃χ(x) is the
distribution of an equivalent nc-χ. 100 different realizations are considered and the
average of the error is calculated.

In the second experiment we test areas with different SNR. 10000 samples of
Gaussian correlated synthetic images are considered. We assume two areas, the for-
mer with 0 mean (background) and the latter with Ai = 1 (signal), the same covari-
ance matrix as before, ρ ∈ [0− 1] and L ∈ [8, 32]. The CMS is obtained using SoS.
A nc-χ is fitted to the signal area and a c-χ to the background. We measure rMSE,
Leff, and σ2

eff as the average among 100 independent trials.
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Fig. 2 Slice of an 8-coil 2D acquisition of the phantom used for the experiments.

3.2 Experiments with MR Data-Sets

A final set of experiments is carried out using real data: 100 repetitions of the same
slice of a phantom, see Fig. 2, scanned in an 8-channel head coil on a GE Signa 1.5T
EXCITE 12m4 scanner with FGRE Pulse Sequence to generate low SNR, Matrix
size= 128x128, TR/TE=8.6/3.38 ms, FOV 21x21cm, slice thickness = 1mm.

First we test the existence of noise correlation between coils. Since, in real cases,
ρij will be different for each pair of coils, we will no longer assume the Σ matrix of
the synthetic experiments, but the following one in eq. 10. The sample correlation
coefficient is calculated for each pixel using the 100 samples:

ρ̂x,y(x) =

n∑
i=1

(xi − x̄)(yi − ȳ)

(n− 1)σxσy

The global ρ̂x,y for each pair of coils is estimated as the average for all pixels.
Once we assure that correlations exist, we expect that the CMS will show a higher

variance of noise and a value of the effective number of coils smaller than 8. For
the sake of simplicity we will focus on the background, though results may easily
be extrapolated to the signal area. The original noise variance σ2

n can be initially
estimated using the variance of the real part of every coil of every sample, where the
noise is known to be AWGN [108, 47]. The effective values are calculated fitting a
c-χ to the histogram of the background data of the CMS, which is obtained by SoS.
For statistical purposes, the data of the 100 images are used for estimation.

4 Results

The average rMSE for the first experiment is plotted in Fig. 3. Fig. 3-A shows the
rMSE for effective parameters, meanwhile Fig. 3-B corresponds to the original L
and σ2

n. According to the plots, it seems clear that the original parameters cannot
be used to model the actual distribution, since the error committed will be huge.
The use of effective parameters significantly reduces the error of the nc-χ model, or
almost cancels it for low correlations. The error grows with ρ, and it is more signif-
icant for larger coil numbers. Finally, for high correlation coefficients, the situation
is similar to have an identical image in each coil or, alternatively, to have a single
coil system. In this case the noise is Rician distributed, and thus the error decreases.
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Fig. 3 Relative errors in the PDF for the central χ approximation (Montecarlo simulations from
synthetic data), as a function of the correlation coefficient. A) Using effective parameters. B) Using
the original parameters.
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Fig. 4 Effective number of coils as a function of the coefficient of correlation, analytically com-
puted for the setting-up of the first experiment. A) Absolute value. B) Relative Value.

Complementary, on Fig. 4 the effective number of coils for the experiment is
depicted. As the correlation grows, all the values tend to one, i.e., for very high
correlation the system is equivalent to a single coil. Those configurations with a
greater number of coils are the ones with the greater slope (see the relative values
in Fig. 4-B): this means they are much more affected by correlations. For instance,
a 32-coil configuration with ρ = 0.2 will be equivalent to a 18-coil configuration,
which gives an idea of the importance of the correlations in the performance of
the scanner. Little correlations will provide higher effective number of coils, and
therefore smaller effective noise powers.

The results for the second synthetic experiment are shown in Fig. 5. The back-
ground (solid line) and signal area (dashed line) have been treated separately. The
experiment shows that there is a mismatch between what occurs in the background
and what occurs in the signal areas. The effective number of coils, for instance, de-
cays faster in the signal areas, even when a moderate SNR (SNR=1) is considered.
With a larger numbers of coils (see L = 32) the difference between the signal ar-
eas and the background is very noticeable for all ρ. The results are similar for the
variance of noise. The different behavior of the effective parameters between the
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Fig. 5 Effective number of coils, effective variance of noise (analytically computed for the setting-
up of the second experiment), and rMSE (numerically computed) for the second experiment.

background and the signal areas will potentially affect noise estimation algorithms
based on the background, see [47].

For the final experiment with the MRI phantom, the estimated covariance matrix
is:

Σ = σ2
n ·




1 0.0060 0.0025 0.0043 0.0070 0.0107 0.0068 0.0132
0.0060 1 0.0270 0.0017 0.0029 0.0144 0.0220 0.0025
0.0025 0.0270 1 0.0277 0.0058 0.0126 0.0113 0.0056
0.0043 0.0017 0.0277 1 0.0056 0.0035 0.0112 0.0003
0.0070 0.0029 0.0058 0.0056 1 0.0359 0.0006 0.0107
0.0107 0.0144 0.0126 0.0035 0.0359 1 0.0192 0.0000
0.0068 0.0220 0.0113 0.0112 0.0006 0.0192 1 0.0234
0.0132 0.0025 0.0056 0.0003 0.0107 0.0000 0.0234 1




As expected, there are some correlations between coils, although their values are
bounded by ρ ≤ ρ5,6 = 0.0359. Thus, the effective values are expected to be close
to the actual ones. The actual variance of noise σ2

n is estimated using the variance
of the real part of every coil and location [47]. The effective values estimated over
the background are as follows:

L = 8; Leff = 7.3073; σn = 0.0430; σeff = 0.0447.

Even for relatively low correlations, the reduction in the effective number of coils
(respectively, the increase of the effective variance of noise) is clearly noticeable.
We would like to stress that this effect has been previously reported in [46] in a
merely empirical basis.

In order to study the non-stationarity of the noise we can also estimate the noise
ratio between the signal areas and the background

Rσ =
1 + 〈ρ〉(L− 1)

1 + 〈ρ〉(L− 1)
= 1.0721.

The small value means that the non-stationarity is barely noticeable.
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5 Discussion and conclussions

Although correlations between coils are usually left aside in multiple coil systems,
we have shown that they can seriously affect the statistical distribution of data, espe-
cially for modern machinery with a large number of receiving antennae. The effect
has been quantified for SoS, although it seems likely to persist with other algorithms.
We have evidenced that the CMS can indeed be accurately approximated with the
traditional nc-χ model whenever effective parameters (reduced L and increased σn)
are used. This variation of the effective parameters can have a deep impact on the
effectiveness of certain coil architectures depending on the resulting correlations.

Since the effective parameters depend on the value of the signal at each point,
the final variance of noise will also depend on the signal, and hence on the position
within the image. Although this effect has been previously described for parallel
imaging techniques such as SENSE and GRAPPA, we may now conclude it is not
a particularity of these protocols, being present even without k-space subsampling.
Actually, the spatial variability in GRAPPA described in [42] responds to the same
correlation phenomenon reported here.

The clearest artifact related to this non-stationarity is the different variance of
noise in the background and the signal areas. One could argue that what happens
in the background is not important, since the information is in the signal areas.
Nonetheless, the background has been traditionally used as a source for parameter
estimation and calibration. Many noise estimation techniques are based on the as-
sumption that the variance of noise in the background and the signal areas are the
same, and hence the estimation is done using the background pixels. If this under-
estimated value is used over the signal areas, proper corrections must be made.

The study carried out is also relevant in image denoising. Many of the most pop-
ular filtering algorithms are based on the statistical characterization of noise, un-
derlying the assumption that it can be considered as a stationary process. We have
shown this is not a realistic assumption in multiple coil systems even without sub-
sampling, and there exists a certain asymmetry between areas with different SNR.
These differences are more important as the number of coils grows, the reason being
two-folded: first, the change in the effective values directly depends on L; second,
as the number of coils in the system increases, it is known that stronger correlations
between them will appear, which is the other factor influencing the non-stationarity
of the signal.

To sum up, the main consequence of the correlation between coils is a reduction
in the effective number of coils in the system. For devices with a large number of
coils this reduction could be quite significant, and it is followed by the increase of
the effective variance of noise. Hence, to improve the effectiveness of the scanner,
the increase of the number of coils should go together with a proper architecture
design to reduce the correlation between them.
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Statistical Noise Analysis in GRAPPA using a
parametrized non-central chi approximation
model

Santiago Aja-Fernández, Antonio Tristán-Vega and W. Scott Hoge∗

Abstract The characterization of the distribution of noise in the magnitude MR im-
age is a very important problem within image processing algorithms. The Rician
noise assumed in single-coil acquisitions has been the keystone for SNR estimation,
image filtering, or diffusion tensor estimation for years. With the advent of parallel
protocols such as SENSE or GRAPPA that allow accelerated acquisitions, this noise
model no longer holds. Since GRAPPA reconstructions yield the combination of the
squared signals recovered at each receiving coil, noncentral Chi statistics have been
previously proposed to model the distribution of noise. However, we prove in this
paper that this is a weak model due to several artifacts in the acquisition scheme,
mainly the correlation existing between the signals obtained at each coil. Alterna-
tively, we propose to model such correlations with a reduction in the number of
degrees of freedom of the signal, which translates in an equivalent non-accelerated
system with a minor number of independent receiving coils and, consequently, a
lower SNR. With this model, a non-central Chi distribution can be assumed for all
pixels in the image, whose effective number of coils and effective variance of noise
can be explicitly computed in a closed form from the GRAPPA interpolation coef-
ficients. Extensive experiments over both synthetic and in vivo data sets have been
performed to show the goodness of fit of out model.

1 Introduction

Statistical models of signal and noise play a fundamental role in medical image pro-
cessing. In particular, many different applications in the Magnetic Resonance (MR)
processing field rely on a well defined prior statistical model of the data. Many ex-

∗ This chapter was previously published as: S. Aja-Fernández, A. Tristán-Vega, W. Scott Hoge
“Statistical Noise Analysis in GRAPPA using a parametrized non-central chi approximation
model” Magnetic Resonance in Medicine, 65:11951206 (2011)
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amples of these model–based methods may be found in literature: noise removal and
signal estimation methods as the Conventional Approach [4], signal and noise max-
imum likelihood estimation [7], Linear Minimum Mean Square Error (LMMSE)
filtering based schemes [8] or unbiased non-local mean filters [11]; noise estima-
tion techniques that assume an homogeneous noisy background which follows a
Rayleigh or central Chi distribution [27, 47, 81, 37, 8, 84]; Weighted Least Squares
methods to estimate the Diffusion Tensor (DT) in DTI, which has proved to be opti-
mal when the data follows a Rician [14] or a non-central Chi distribution [109]; and
new procedures for DTI tensor estimation based on an underlying statistical model
[110].

For practical purposes, this modeling is usually done assuming noise in MR data
is a zero-mean uncorrelated Gaussian process with equal variance in both the real
and imaginary parts in each acquisition coil. As a result, in single coil systems mag-
nitude data in the spatial domain are modeled using a stationary Rician distribu-
tion [5]. A natural extension can be made to stationary non–central Chi models
when more that one coil is present and the k–space is fully sampled [27]. Multi-
ple coil systems were developed to enhance the Signal to Noise Ratio (SNR) of
the magnitude image while maintaining a large Field of View (FOV). Parallel MRI
(pMRI) techniques [30, 31] extended the applicability of these systems by increas-
ing the image acquisition rate via subsampling of the k–space data. The k–space
subsampling creates aliasing and underlying artifacts in the spatial domain image.
In order to suppress or correct these artifacts, reconstruction methods such as Sen-
sitivity Encoding (SENSE) [32] and GeneRalized Autocalibrated Partially Parallel
Acquisitions (GRAPPA) [33] are employed.

If k–space data is subsampled and reconstructed with some pMRI method, the
noise power in the final image will become non-stationary: it will vary across the
image and also be different in each receiving coil image. Depending on the way
the information from each coil is combined (i.e., depending on the reconstruction
method), the statistics of the image no longer follow the non–central Chi distri-
bution. It is therefore necessary to study the behavior of the data for a particular
reconstruction method. For instance, the reconstruction in SENSE takes place into
the spatial domain [32] and it can be seen as a combination of the subsampled coils
weighted by some factors dependent on the sensitivity map. As a result, the recon-
structed image will follow a complex Gaussian distribution [46], and as a conse-
quence of different weighting for each pixel, this distribution will be non-stationary.
When taking the magnitude value, this Gaussian becomes a non-stationary Rician
distribution. For GRAPPA, some simulation based [43] and preliminary studies [46]
have been made, but these methods still lack a theoretical statistical model.

In this paper, we will focus on GRAPPA. This method performs the recon-
struction in the k-space domain, it does not need an explicit coil sensitivity field
map estimation to perform the reconstruction, and supports reconstruction of vari-
able density sub–sampling. We will study how the reconstruction method affects
the assumed prior noise models. As a result, we will propose a parametrized non-
stationary non-central chi distribution to model the composite magnitude image with
GRAPPA reconstruction and sum-of-squares (SoS) coil combination. This will nat-



Title Suppressed Due to Excessive Length 45

urally lead to the definition of an effective number of coils and an effective variance
of noise which depend on both the original chi distribution parameters of the mea-
sured data and on the GRAPPA reconstruction weights.

2 Theory

2.1 Statistical model in single– and multiple–coil MR signals

k–space data is typically acquired through repeated application of excitation pulses
with a different phase encoding gradient for each readout gradient. Each sampled
line of k–space is “frequency encoded”, and the measured signal is uniformly sam-
pled at the desired rate. As a consequence, points in the k–space measured from
the MRI scanner are independent samples of an RF signal measured with a receiver
coil, for which the noise can be modeled as a complex stationary Additive White
Gaussian Noise (AWGN) process, with zero mean and variance σ2

K .
For a single–coil acquisition the complex spatial MR data is therefore also mod-

eled as a complex Gaussian process and the magnitude signal M(x) is the Rician
distributed envelope of the complex signal [5]. In the image background, where the
signal-to-noise ratio is zero due to the lack of water-proton density in the air, the Ri-
cian simplifies to a Rayleigh distribution. In a multiple–coil MR acquisition system,
from a merely statistical point of view, the acquired signal in the k–space data for
each coil can be modeled as:

sl(k) = al(k) + nl(k;σ2
K), l = 1, · · · , L (1)

with al(k) the original signal if no noise is present and nl(k;σ2
K) = nlr (k;σ2

K) +
jnli(k;σ2

K) complex uncorrelated Gaussian processes with zero mean and variance
σ2
K . The noise is initially assumed to be stationary, and therefore parameter σ2

K does
not depend on k.

The complex x–space image is obtained via the 2D inverse Discrete Fourier
Transform (iDFT) of sl(k) for each slice. Since the iDFT is a linear operator, the
noise in the complex signal in the x–space for each coil will also be Gaussian, and
it can be expressed as:

Sl(x) = Al(x) +Nl(x;σ2
n),

where Nl(x;σ2
n) = Nlr (x;σ2

n) + jNli(x;σ2
n) is a complex Gaussian process with

zero mean and variance σ2
n. It is easy to prove the relation [111]:

σ2
n =

1

|Ω|σ
2
K , (2)

where |Ω| is the size of the image in each coil, i.e. the number of points used in the
2D iDFT.
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If the k–space is fully sampled, the composite magnitude image may be obtained
using methods such as SoS [27, 38]:

ML(x) =

√√√√
L∑

l=1

|Sl(x)|2. (3)

Defining AT (x) =

√
L∑
l=1

|Al(x)|2, and assuming the noise components to be iden-

tically and independently distributed, the envelope of the magnitude signal ML will
follow a non–central Chi (nc-χ) distribution [27] with probability density function
(PDF):

pML
(ML|AT , σn, L) =

A1−L
T

σ2
n

ML
L e
−M

2
L+A2

T
2σ2n IL−1

(
ATML

σ2
n

)
u(ML), (4)

with IL(.) the Lth order modified Bessel function of the first kind and u(.) the Heav-
iside step function. Eq. 4 reduces to the Rician distribution [5] for L = 1. In the
background, this PDF simplifies to a central Chi distribution with PDF:

pML
(ML|σn, L) =

21−L

Γ (L)

M2L−1
L

σ2L
n

e
−M

2
L

2σ2n u(ML). (5)

As a final remark, note that three requirements are needed for the SoS of Gaussian
random variables (RV) to be modeled as a stationary nc-χ:

1. The noise is stationary in each of the Complex Gaussian x–space images. If the
k–space data is fully sampled, the noise variance will be the same for all the
points in the image in both the k–space and x–space domains, and the noise can
be assumed to be stationary.

2. The variance of noise σ2
n is the same for each of the coils.

3. No correlation is assumed between the Gaussian RVs.

We will see that these requirements are not fulfilled when GRAPPA is employed.
One of the aims of parallel imaging is precisely to accelerate the image acquisition
process by sub–sampling data in each coil. From a statistical point of view, such a
reconstruction will affect the underlying model and the stationarity of the noise in
the reconstructed data.

2.2 Statistical model in GRAPPA reconstructed images

The GRAPPA reconstruction strategy estimates the missing lines in a sub–sampled
k–space data [33, 30, 34] acquisition for each coil. While the sampled data sSl (k)
remain the same, the reconstructed lines sRl (k) are estimated through a linear com-
bination of the existing samples. Weighted data in a neighborhood η(k) around the
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estimated pixel from several coils is used for such an estimation:

sRl (k) =

L∑

m=1

∑

c∈η(k)

sSm(k− c)ωm(l, c), (6)

with sl(k) the complex signal from coil l at point k and ωm(l,k) the complex recon-
struction coefficients for coil l. In self-referenced reconstructions, these coefficients
are determined from the low-frequency coordinates of k–space, termed the Auto
Calibration Signal (ACS) lines, which are sampled at the Nyquist rate (i.e. unac-
celerated). Breuer et al. in [51] pointed out that eq. 10 can be rewritten using the
convolution operator:

sRl (k) =

L∑

m=1

sSm(k) ~ wm(l,k), (7)

where wm(l,k) is a convolution kernel that can be easily built from the GRAPPA
weight set ωm(l,k). Since a (circular) convolution in the k–space is equivalent to a
product into the x-space, we can write [51]:

SRl (x) = |Ω|
L∑

m=1

SSm(x)×Wm(l,x) (8)

= |Ω|
L∑

m=1

[
ASm(x) +Nm(σ2

n)
]
×Wm(l,x)

= |Ω|
L∑

m=1

ASm(x)×Wm(l,x)

︸ ︷︷ ︸
Reconstructed Signal

+ |Ω|
L∑

m=1

Nm(σ2
n)×Wm(l,x)

︸ ︷︷ ︸
Gaussian Noise

(9)

= ARl (x) +NRl (x) (10)

withWm(l,x) the GRAPPA reconstruction coefficients in the x-space. The variance
of noise in the x-space of the sampled data is σ2

n =
σ2
K

|Ω|·R , withR the reduction rate.
Note that:

1. As a consequence of the coefficients Wm(l,x) (which have different values for
each pixel) the reconstructed signal in each coil SRl (x) becomes a non–stationary
Gaussian process, i.e. a complex distributed Gaussian image with different pa-
rameters (mean and variance) in each point of the image:
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E{SRl (x)} = ARl (x) = |Ω|
L∑

m=1

ASm(x)×Wm(l,x) (11)

Var{SRl (x)} = |Ω|2



L∑

m=1

σ2
m × |Wm(l,x)|2 + 2

∑

p 6=q

σ2
pqRe{Wp(l,x)W ∗q (l,x)}




= σ2
l
R

(x). (12)

Therefore, the stationarity requirement in described in section 2.2 fails.
2. For the same pixel x, the mean and the variance will also vary along the coil

dimension, and therefore the second requirement for the nc-χ model fails.
3. Even assuming that the coils are initially uncorrelated, signals SRl (x) will be

correlated due to the GRAPPA reconstruction. Note that the signal in each coil is
a linear combination of the signals at all remaining coils, hence the third require-
ment also fails.

The composite magnitude image ML(x) can be obtained using SoS. For conve-
nience, in what follows we will equivalently consider M2

L(x) instead of ML(x) (if
ML follows a nc-χ distribution, M2

L will follow a nc-χ squared).
After GRAPPA reconstruction, the interpolated lines at each coil SRl (x) can be

seen as strongly correlated non-stationary complex Gaussian RVs. Therefore, from
a theoretical point of view the magnitude image after SoS, ML(x), will not strictly
be a nc-χ, although it is usually modeled that way in the literature [46].

The SoS image can be expressed as

M2
L(x) =

L∑

l=1

|SRl (x)|2 (13)

=

L∑

l=1

|SSl (x)|2 · C2
l (x) + 2

∑

p>q

Re{SSp (x)
(
SSq (x)

)∗
C2
pq(x)} (14)

with

C2
l (x) = |Ω|2

L∑

i=1

Wi(l,x) ·W ∗i (l,x) = |Ω|2
L∑

i=1

|Wi(l,x)|2

C2
pq(x) = |Ω|2

L∑

i=1

Wi(p,x) ·W ∗i (q,x) = C2
qp(x)∗.

Signal M2
L(x) can be seen as the SoS of the sum of weighted Normal variables. A

deep study of the resultant distribution is done in Appendix 6.1. The mean and the
variance (for each x) of the resulting distribution are:

E{M2
L(x)} = A2

T + 2 tr
(
C2
X

)
; (15)

Var{M2
L(x)} = 4 A∗C2

XA + 4 ||C2
X ||2F . (16)
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where C2
X = WΣW∗ is the covariance matrix of the interpolated data at each

spatial location, M(x) = [M2
1 ,M

2
2 , · · · ,M2

L]T . Accordingly, Σ2 is the covariance
matrix of the original data at each coil. ||.||F is the Frobenious norm, and A(x) =
[A1, A2, · · · , AL]T is the noise-free reconstructed signal, from which we define:

A2
T (x) =

L∑

i=1

|ARi (x)|2 =

L∑

l=1

|ASl (x)|2 · C2
l (x).

Although the resultant distribution is not strictly a nc-χ2, our hypothesis is that
its behavior will be very similar and could be modeled as such (the error in this
approximation will be quantified in the results section). However, the high correla-
tions between the reconstructed signals in each coil should translate in a decrease
of the number of Degrees of Freedom (DoF) of the distribution. In Appendix 6.1,
the method of the moments is used to show that the reduction in the number of DoF
translates in an effective number of coils (obviously reduced, since the number of
coils L is clearly related to the DoF) and an effective variance of noise:

Leff(x) =
A2
T tr

(
C2
X

)
+
(
tr
(
C2
X

))2

A∗C2
XA + ||C2

X ||2F
; (17)

σ2
eff(x) =

tr
(
C2
X

)

Leff
. (18)

Finally, note that the origin of the reduced DoF of the nc-χ2 model is in the
correlation and inhomogeneous variance of the complex Gaussians, i.e. in C2

X not
being of the form σ2I with I the identity matrix. With GRAPPA the distortion comes
mainly from the interpolation matrix W which is not diagonal. For unaccelerated
acquisitions we may write W = I, so that C2

X = Σ2. Even in this case, Σ2 is
not necessarily diagonal, since a certain correlation does exist between the signals
at each channel especially for those systems with a large number of receiving coils
L. This means that effective parameters should be considered even if no subsam-
pling is performed, as has been empirically shown by [46]. We can summarize our
developments as follows:

1. The nc-χ model does not hold for GRAPPA reconstructed data. However, this
distribution can be used as a good approximation of the actual one.

2. For this approximation to hold, effective parameters have to be considered which
represent an equivalent, non-subsampled configuration with a smaller number of
coils (DoF) and, consequently, a greater level of noise.

3. Even when the nc-χmodel is feasible, the resulting distribution is non-stationary
(the effective parameters are spatially dependent).
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Fig. 1 Data sets for the experiments.

3 Materials and Methods

3.1 Data sets

In order to validate the hypothesis posed in the previous section, the following data
sets are considered for the experiments, see Fig. 1:

• Data set 1: 1 repetition of 8-channel head coil data acquired on a GE Signa 1.5T
EXCITE 11m4 scanner, FGRE Pulse Sequence, TR=500 ms, TE= 13.8 ms, ma-
trix size= 256×256, FOV=20×20 cm, slice thickness= 5 mm.

• Data set 2: the MR brain data-set from [112] (the authors provide their data
set on-line2); eight-channel head array from 3 Tesla GE scanner, fast spoiled
gradient-echo sequence, TR/TE=300/10 ms,RBW= 16 kHz, matrix size = 256×256,
FOV 22×22 cm.

• Data set 3: 60 repetitions of the same slice of a phantom, scanned in an 8-channel
head coil on a GE Signa 1.5T EXCITE 12m4 scanner with FGRE Pulse Se-
quence to generate low SNR. matrix size= 128×128, TR/TE=8.6/3.38 ms, FOV
21x21cm, slice thickness = 1mm.

In addition, synthetically generated random variables will also be considered.

3.2 Synthetic Experiments

First, we numerically validate the nc-χ approximation proposed and measure the
error introduced with this approach. To that end synthetically generated RVs are
considered in the following experiments and the following distributions are com-
pared:

2 http://www.ece.tamu.edu/˜jimji/pulsarweb/index.htm
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• A nc-χ2 distribution with the effective parameters Leff and σ2
eff.

• A nc-χ2 distribution with the original parameters (L = 8).
• A Normal distribution fitted using the mean and the variance in eqs. 15 and 16.

The validation experiments are as follows:

1. For the sake of illustration, we fit the histogram of the real distribution to the
proposed three statistical models. We consider 5 · 104 samples of 8 complex
Gaussian RVs with zero mean and unitary variance, N(0, 1). The RVs are com-
bined using 8× 8 complex random weights (W ∼ N(1, 4)) and then combined
using the (square) SoS. The experiment is repeated with the same parameters,
but considering a signal value of Ai = 3, i = 1, · · · 8.

2. We will analyze the error committed with the nc-χ2 approximation for different
configurations of matrix C2. To avoid any effect of the signal over the noise, we
first assume that µi = 0. We define 104 samples of 8 complex Gaussian RVs and
a 8× 8 coefficient matrix W, so that three different scenarios are considered (see
Appendix for more details about the relation between matrix C2 configuration
and the final distribution):

a. Matrix C2 is diagonal (different elements in the diagonal).
b. Matrix C2 is not diagonal and the diagonal elements are greater than the rest

of the elements (diagonal dominant).
c. Matrix C2 is totally random.

Since we are assuming unitary noise variance and no correlation, note that C2 =
C2
X . These configurations will be measured by two parameters:

a. The coefficient of variation of the elements of the diagonal: Cv2{C2
l }.

b. The ratio between the determinant of C2 and the trace of the matrix: ||C2||/Tr(C2).
This is a measure of the weight of the non-diagonal elements over the diago-
nal. Note that for the first case, this parameter is a constant.

The RVs are combined following eq. 14. The analysis in terms of the elements
of matrix C2 is used to characterize whether a nc-χ2 can be accurately fitted in
each particular situation3. The following (relative) Mean Squared Error (rMSE)
is measured:

rMSE =

∫∞
∞ |pO(x)− pz(x)|2dx∫∞

∞ |pz(x)|2dx (19)

where pO(x) is the PDF of the original data (estimated from the histogram of the
104 samples for each pixel) and pz(x) is the distribution to fit.

3. We will test the model fit for different SNR values with a given set of weights.
We consider 104 samples of 8 complex Gaussian RVs with unitary variance and
mean in the range µ ∈ (0, 3), i.e ∼ N(µ, 1). The RVs are combined using 8 ×
8 complex random weights (selected in a range similar to an actual GRAPPA

3 Note that since Ai = 0, we are really fitting a central χ2 rather than a nc-χ2, but the reasoning
and the conclusions are similar.
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reconstruction) and the SoS is considered. We calculate the error of fitting a nc-
χ2 and a Gaussian for different SNR values, defining the original SNR in each
coil as SNR= µ

σ = µ.

3.3 Experiment with the MR data-sets

In a second stage, GRAPPA coefficients from actual MR acquisitions will be used.
In each case, a rectangular 2 ky -by- 5 kx GRAPPA convolution kernel η(k) is
employed. The following experiments are considered:

1. Data sets 1 and 2: The k–space data are 2× subsampled with 32 ACS lines–
skipping every other line except in the central region. From the ACS lines the
GRAPPA coefficients ωm(l,k) are estimated. The k–space domain coefficients
are then transformed to x-space, Wm(l,x). The experiments proposed for syn-
thetic data are repeated using the calculated GRAPPA coefficients. For each of
the pixels in the image we consider 104 samples of 8 complex Gaussian RVs with
unitary variance and mean in the range µ ∈ (0, 4), so that original SNR ∈ (0, 4).
To simulate the reconstruction process, for each of the values of x the RVS are
combined following eq. 9, and the composite magnitude image is obtained by
SoS. For the sake of simplicity, M2

l (x) will be used. After reconstruction, 104

samples of the 256×256 image are available.The distribution of the data is tested
by fitting a theoretical probability distribution to the real data. To that end, the
rMSE is measured. The same three distributions used in the synthetic experi-
ments (nc-χ2 with effective parameters, nc-χ2 with the original parameters and
Gaussian) are considered.

2. Data set 1: To further test it, the experiment for Data set 1 is repeated with SNR=
1. A variable number of samples is considered, and a Kolmogorov–Smirnov test
at a significance level of α = 0.05 is used to decide whether the sample data
follow any of the proposed distributions.

3. Data set 3: The GRAPPA reconstruction coefficients are derived from one of the
60 samples, using 2× subsampling and 32 ACS lines. All the 60 samples are
2× subsampled and reconstructed with the same GRAPPA coefficients and the
composite magnitude image is obtained by SoS. A Golden Standard (to obtain
theAi values) is created by averaging the complex data in each coil. The original
σn and σK values for each coil are estimated from the background of the fully
sampled images [47]. Theoretical values ofLeff(x) and σ2

eff(x) are calculated for
each point x. A Kolmogorov–Smirnov test at a significance level of α = 0.05 is
used to decide whether each x point of the 60 samples follow a nc-χ distributions
with parameters Leff(x) and σ2

eff(x).
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Fig. 2 Actual distribution of the SoS of the sum of weighted Normal RVs compared to nc-χ2

distribution approximation and Gaussian distribution.

4 Results

4.1 Synthetic Experiments

First, we will consider the experiments with synthetically generated weights. Results
for the first experiment are shown in Fig. 2. Note that the nc-χ2 distribution with
effective parameters is the distribution that better follows the actual variations of the
data for both experiments. The more asymmetric the distribution, the better is the
behavior of the nc-χ2 when compared to the Gaussian.

The second experiment measures the error of the different approximations as a
function of the configuration of matrix C2, i.e. the C2

pq(x) coefficients. Results are
depicted in Fig. 3. In all the cases, the nc-χ2 distribution with effective values is
the one that shows a lower rMSE for a wider range of variation of parameters. In
all the cases, the error of approximating the actual distribution by a nc-χ2 is always
smaller than 0.1, usually around 0.05. In Fig. 3-(a) (diagonal case) we can see that
as the values in the diagonal are more different, the Gaussian and the nc-χ2 with
original parameters produce a greater error. However, the approximation with effec-
tive parameters remains constant. Fig. 3-(b)-(c) shows the results for the dominant
diagonal, and Fig. 3-(d)-(e) the results for the random C2. An interesting effect in
these two experiments is that for the original nc-χ2 and the Gaussian approaches the
error increases when the ratio ||C2||/Tr(C2) grows. It means that, as the diagonal
becomes less significant, these two approaches are not a good representation of the
data. The nc-χ2 approximation with effective parameters due precisely to the fine
tune of these effective parameters, is able to properly fit the actual distribution.

The evolution of the effective number of coils for the experiment in Fig 3-(d)-
(e) is reproduced in Fig. 4. As the ratio ||C2||/Tr(C2) grows, the correlation be-
tween variables also grows. As a consequence, the number of DoF of the system
will decrease together with the effective number of coils, Leff. This reduction in
Leff implies an increase in σ2

eff and consequently a decrease in the SNR.
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The third synthetic experiment deals with the error of the approximation for dif-
ferent SNR configurations. Results are depicted in Fig. 5. For large SNR values
(SNR> 2), the nc-χ2 and the Gaussian approximation converges, as expected.
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Fig. 6 rMSE of different statistical approximations using the GRAPPA coefficients of dataset 1.
Different original SNR are considered. Top row: nc-χ2 with effective parameters. Middle row:
Gaussian. Bottom row: nc-χ2 with original parameters.

4.2 Experiment with the MR data-sets

The next step is to analyze the results generated by estimated GRAPPA coefficients.
Results for the data fit for different distributions are shown in Fig. 6 for the data set
1 and in Fig. 7 for the data set 2. In both cases, the rMSE for each of the points
of the final image is shown. For better illustration, the average of the rMSE in the
whole image is depicted in Fig. 8. Regardless of the SNR level, the error committed
when approximating the distribution by a nc-χ2 with effective parameters is always
lower than 6%, while the other two models (Gaussian and nc-χ2) show greater val-
ues. What is more, the rMSE for nc-χ2 is quite independent of the SNR value. As
expected, the Gaussian model is a good approximation when SNR increases. On the
other hand, if nc-χ2 is considered but the effective parameters are not used, the error
even increases together with the SNR in certain areas of the image.
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Fig. 7 rMSE of different statistical approximations using the GRAPPA coefficients of dataset 2.
Different original SNR are considered. Top row: nc-χ2 with effective parameters. Middle row:
Gaussian. Bottom row: nc-χ2 with original parameters.

Fig. 8 Average of the rMSE in the whole image for the different SNR values.

From these results, we can conclude that the nc-χ model (with effective param-
eters) proposed gives a small error when considering the GRAPPA reconstruction
coefficients from actual parallel acquisitions.

It is also interesting analyzing the distribution of the effective parameters along
the image. Note that these parameters only depend on the GRAPPA coefficients. The
effective number of coils (Leff) is shown in Fig 9 and the effective variance of noise
(σ2

eff) is shown in Fig. 10. Note that those cases with low SNR also show low levels
of the effective number of coils. Note also that the distribution of Leff correlates
with the error committed when considering nc-χ2 without effective parameters. The
points with lower rMSE are logically those with greatest values of Leff.

The variance of noise, on the other hand, shows a great variation along the image,
which confirms the non-stationarity assumption previously done. Values of σn range
between 2 and 6. However, note that the variation of this parameter across the image
is soft. So, in some applications (like filtering methods) local stationarity may be
assumed if needed.
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Fig. 9 L effective for different SNR values. Top: Data set 1. Bottom: Data set 2.

Fig. 10 σn effective for different SNR values. Top: Data set 1. Bottom: Data set 2.
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Fig. 11 Rate of sets passing the Kolmogorov–Smirnov test for the distributions under study as a
function of the size of the population. Significance level is α = 0.05, and a SNR=1. The data are
synthetically generated from the GRAPPA coefficients of data set 1.

In Fig. 11 the acceptance rate by the Kolmogorov-Smirnov test for different set
sizes is depicted. The acceptance rate for the nc-χ2 model (with effective param-
eters) is over the 90% even for large population sizes. The larger the size of the
sample, the easier for the test to reject the null hypothesis. For the Gaussian and nc-
χ2 models the rate goes down very fast, so that they can only be accepted for very
small populations. It may be concluded that the effective nc-χ2 model accurately
fits data generated following the GRAPPA reconstruction algorithm.
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Finally, the Kolmogorov-Smirnov test is run over the 60 GRAPPA reconstructed
samples of the MR phantom (data set 3). The 90.13% of the points in the image
passed the test, which correlates well with the results of the previous experiment,
and confirms the nc-χ (with effective parameters) as a suitable distribution to accu-
rately model data after GRAPPA reconstruction and SoS.

5 Discussion

The statistical characterization of the composite magnitude signal after GRAPPA re-
construction as a parameterized non–stationary nc-χ distribution has been derived.
In fully sampled images, the derivation of the magnitude signal distribution is a
straight transformation from the prior Gaussian model for each coil. With pMRI
techniques, the final model strongly depends on the particular algorithm used. In
general, those reconstructing one single image domain drive to a Rician distribu-
tion, since the magnitude is computed as the modulus of a Gaussian variable. Con-
trary to conventional MRI, the noise in the image cannot be considered stationary
strictly speaking, since its variance shows fluctuations across the image. Besides,
noisy samples cannot be considered independent either, due to interpolation arti-
facts.

The analysis of GRAPPA reconstructed signals is more difficult. Although its
feature of providing one complete image domain for each receiving coil assimilates
it to conventional multiple coils systems, the non–central Chi distribution does not
directly apply to this case. Apart from the aforementioned interpolation artifacts
related to non–stationary noisy patterns and correlations, the noise variance for each
receiving coil is different with this kind of reconstruction. Hence, a non–central Chi
model cannot be assumed in general. For brain images, which are the data sets of
interest in this dissertation, it has been shown that in fact this distribution is a very
accurate approximation to the actual statistics of noise. However, as a consequence
of the correlation between the reconstructed data in each coil, reduced effective
parameters, namely the effective number of coils and the effective variance of noise,
must be taken into account. Thus, the final distribution for each point is equivalent
to an acquisition with a fewer number of coils and a greater variance of noise.

We want to remark the importance of the suitable statistical model for GRAPPA
proposed here. As an example. we will propose some future applications. (1) In
the case of tensor estimation in DTI, in [109] authors show that Weighted Least
Squares (WLS) is theoretically a good method to estimate the DT if the data is nc-χ
distributed. GRAPPA reconstructed data is being widely used for these purposes,
but knowing the models we assure a good estimation, and we can measure the bias
and variance of the estimation error. (2) Although the signal is non-stationary, we
can assume a small spatial variation of the parameters. This way, we can calculate
local statistics and reformulate Rician noise filtering methods, like the conventional
approach [4], ML [7], or LMMSE [8]. These algorithms will need as an input the
number of coils L and the variance of noise σ2

n. When applied over GRAPPA im-



Title Suppressed Due to Excessive Length 59

ages, the new derived effective parameters must be used instead.(3) Noise estimation
is usually done assuming that the noise is stationary in the background [113], i.e. the
value of the variance of noise is homogenous for all the pixels in the background. As
a consequence, those methods cannot be directly applied with GRAPPA. However,
with the effective σn value derived for each x value in the image, the inhomogeneous
background in GRAPPA can be easily corrected and used for estimation, straightly
applying some of the methods in [47].

It is also convenient to stress the limitations of the study performed in this paper.
First, the analysis carried out in this paper is only valid for the SoS to combine
the images from each coil. Other methods used by newer systems, such as linear
channel combination or B1 maps have not been considered. With these methods
eq. 14 will differ, and a new study of parameters will be needed. Finally, certain
MRI techniques, such as EPI, which can show their own peculiarities with regard to
the statistical characterization of noise, has been removed from the study.

6 Conclusions

The main contribution of this paper is the statistical characterization of the com-
posite magnitude signal after GRAPPA reconstruction as a parameterized non–
stationary nc-χ distribution. We have shown that although data does not strictly
follows a non–central Chi model, in practical cases this distribution is a very ac-
curate approximation to the actual statistics of noise in the magnitude composite
signal when SoS is used. To really fit the distribution to the data, reduced effective
parameters are considered: the effective number of coils and the effective variance
of noise. As a final remark we want to point out that the studied carried out is totally
valid if initial correlations are assumed between coils.

6.1 About the SoS of the sum of weighted Normal variables

Let Nl(µl, σ2
l ), l = {1, · · · , L}, be a set of independent Gaussian complex random

variables (RVs) with mean µl and variance σ2
l . For simplicity, let us initially as-

sume a diagonal covariance matrix, i.e. there is not any initial correlation between
variables:

Σ =




σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
L




We define a linear combination of these RVs (as the one done for each pixel in
GRAPPA in the x-space, see eq. 1) using complex weights as
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Mi =

L∑

l=1

Nl ·Wil

with Wil a set of known (generic) complex weights which are arranged into the
following matrix:

W =




W11 W12 · · · W1L

W21 W2 · · · W2L

...
...

. . .
...

WL1 WL2 · · · WLL


 (20)

The (square) sum of squares (SoS) is defined as:

X2 =

L∑

i=1

|Mi|2 (21)

=

L∑

l=1

|Nl|2 · C2
l + 2

∑

p>q

Re
{
NpN

∗
q · C2

pq

}
(22)

with

C2
l =

L∑

i=1

Wil ·W ∗il =

L∑

i=1

|Wil|2

C2
pq =

L∑

i=1

Wip ·W ∗iq = (C2
qp)
∗

Note that C2
l = C2

ll. Let us define matrix C2 as

C2 =




C2
1 C2

12 · · · C2
1L

C2
21 C2

2 · · · C2
2L

...
...

. . .
...

C2
L1 C

2
L2 · · · C2

L


 = WW∗

There are three possible scenarios directly related to the three requirements for the
nc-χ described in section 2.2:

1. Matrix C2 is diagonal and with all the elements in the diagonal equal and the
variance of all the Gaussian variables is the same, i.e. σ2

l = σ2. All the require-
ments are fulfilled and X2 follows a non-central Chi square (nc-χ2) distribu-
tion [45] with PDF:

pX(x|AT , σ, L) =
A1−L
T

2σ2
x

1
2 (L−1)e−

x+A2
T

2σ2 IL−1

(
AT
√
x

σ2

)
u(x), (23)
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with Ai =
L∑
l=1

µl ·Wil and A2
T =

L∑
i=1

|Ai|2 =
L∑
l=1

|µl|2 · C2
l . The mean and the

variance of the distribution will be

E{X2} = A2
T + 2σ2L (24)

Var{X2} = 4A2
Tσ

2 + 4Lσ4. (25)

2. Matrix C2 is diagonal, but the variance of each variable σ2
l is different, and

therefore the elements of the diagonal are different. In this case, the second re-
quirement is not fulfilled and the distribution of X2 is no longer nc-χ2. For each
variable, |Mi|2 will follow a nc-χ2 distribution as the one in eq.23 with L = 1
and its characteristic function will be

GM2
i
(ω) =

1

1− 2jωσ2
iC

2
i

exp

( |Ai|2jω
1− 2jωσ2

iC
2
i

)
.

Therefore, the characteristic function for X2 will become:

GX2
(ω) =

L∏

i=1

GM2
i
(ω) =

L∏

i=1

1

1− 2jωσ2
iC

2
i

exp

( |Ai|2jω
1− 2jωσ2

iC
2
i

.

)

The mean and the variance of this distribution are:

E{X2} = A2
T + 2

L∑

i=1

σ2
iC

2
i (26)

Var{X2} = 4A2
T

L∑

i=1

σ2
iC

2
i + 4

(
L∑

i=1

σ2
iC

2
i

)2

(27)

The greater the fluctuation of the noise power σ2
l along the coils, the greater the

error committed when approximated by a nc-χ2. The error in the approximation
can be measured by the variability of σ2

l .
3. Matrix C2 is not diagonal. Neither the second nor the third requirements are

fulfilled. In this case, the final PDF or the characteristic function become hard to
derive theoretically. The mean and the variance can be calculated:

E{X2} = A2
T + 2

L∑

l=1

σ2
l · C2

l (28)

Var{X2} = 4

L∑

l=1

σ2
l |αl|2 + 4

L∑

p=1

L∑

q=1

|C2
pq|2σ2

pσ
2
q . (29)

with

αl =

L∑

i=1

AiW
∗
il =

L∑

i=1

µi · C2
il
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If we define the covariance matrix of X2 as [51]

C2
X = W ·Σ ·W∗ (30)

the mean and the variance can be rewritten as

E{X2} = A2
T + 2 tr

(
C2
X

)
(31)

Var{X2} = 4 A∗C2
XA + 4 ||C2

X ||2F . (32)

with ||.||F the Frobenious norm and A = [A1, A2, · · · , AL]T .
The third case is the one usually found when dealing with GRAPPA reconstruc-

tion. As an effect of the correlation between the RVS Mi, the number of Degrees of
Freedom (DoF) of the final distribution would decrease. In order to fit the new distri-
bution to a nc-χ2, the method of the moments is used over the theoretical mean and
variance in eqs. 24, 25, 28 and 29. As a result, the final nc-χ2 shows new effective
values for the parameters L and σ:

Leff =
A2
T tr

(
C2
X

)
+
(
tr
(
C2
X

))2

A∗C2
XA + ||C2

X ||2F
(33)

σ2
eff =

tr
(
C2
X

)

Leff
(34)

The effective L parameter is directly related to the DoF of the distribution, and it
will decrease. As a consequence, parameter σ will increase.

This solution has been obtained assuming that there is no initial correlation be-
tween coils. However, it can be easily extrapolated to the correlated case. Note that
even if Σ is not diagonal, it is an Hermitian, positive-definite matrix, and therefore
it can be decomposed as:

Σ = UDU∗

with D the real, diagonal matrix with positive eigenvalues. Thus, we can write:

CX = (WU) ·D · (WU)∗.

So, although Σ is not diagonal, we can decorrelate it by assuming an effective
weight matrix We = WU and an effective decorrelated initial covariance matrix
Σe = D. The final covariance matrix will be

CX = We ·Σe ·W∗
e .

With this formulation, results in eqs. 33-34 are totally valid for the correlated case.
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Statistical Noise Analysis in SENSE Parallel
MRI

Santiago Aja-Fernández, Gonzalo Vegas-Sánchez-Ferrero, Antonio Tristán-Vega∗

Abstract A complete first and second order statistical characterization of noise in
SENSE reconstructed data is proposed. SENSE acquisitions have usually been mod-
eled as Rician distributed, since the data reconstruction takes place into the spatial
domain, where Gaussian noise is assumed. However, this model just holds for the
first order statistics and obviates other effects induced by coils correlations and the
reconstruction interpolation. Those effects are properly taken into account in this
study, in order to fully justify a final SENSE noise model. As a result, some inter-
esting features of the reconstructed image arise: (1) There is a strong correlation
between adjacent lines. (2) The resulting distribution is non-stationary and there-
fore the variance of noise will vary from point to point across the image. Closed
equations for the calculation of the variance of noise and the correlation coefficient
between lines are proposed. The proposed model is totally compatible with g-factor
formulations.

1 Introduction

An accurate statistical model of signal and noise is the keystone for many different
applications in medical image processing and in the Magnetic Resonance (MR) field
in particular. Traditionally, noise filtering techniques are based on a well-defined
prior data statistical model. Many examples can be found in literature, such as the
Conventional Approach [4], ML [7] and LMMSE [8, 9, 10] estimators or unbiased
non-local mean filters [11, 12, 13]. A proper noise modeling may be useful not only
for filtering purposes, but for many other processing techniques. Lately, for instance,
Weighted Least Squares methods to estimate the Diffusion Tensor have proved to

∗ This chapter was previously published as: Santiago Aja-Fernández, Gonzalo Vegas-Sánchez-
Ferrero, Antonio Tristán-Vega “Statistical Noise Analysis in SENSE Parallel MRI”. LPI Technical
Report TECH-LPI2012-01. V2.0 June 2013. arXiv:1402.4067.
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be nearly optimal when the data follows a Rician [14] or a non-central Chi (nc-χ)
distribution [109, 15].

For practical purposes, the modeling is usually done assuming noise in MR data
is a zero-mean spatially uncorrelated Gaussian process with equal variance in both
the real and imaginary parts in each acquisition coil. As a result, in single coil sys-
tems magnitude data in the spatial domain are modeled using a stationary Rician
distribution [5]. When multiple coils are considered and the k-space is fully sam-
pled, the natural extension of the Rician model yields to a stationary nc-χ distribu-
tion, whenever the different images are combined using sum of squares, the variance
of noise is the same for all coils, and no correlations exist between them. However,
multiple coils systems are preferably set up to work with subsampled k-space data,
which have to be combined by some means to avoid the inherent aliasing artifact
introduced by the under-completeness of the Fourier domain. The most popular
algorithms to accomplish this task are GRAPPA [33] and SENSE [32], the latter
focusing the discussion in the present paper.

While the nc-χ has been used to describe noise in GRAPPA [51, 42], SENSE
acquisitions have been usually modeled as Rician distributed, owing to the com-
putation of the modulus of the complex signal linearly obtained from the array of
coils [43]. However, this model stands exclusively for the first order statistics of
noise, and obviates some other side effects induced by coils correlations and k-space
interpolation. For example, in GRAPPA reconstructions, both the initial inter-coil
codependence and the k-space interpolation introduce a strong correlation between
the signals to be combined, and the nc-χ model is not strictly fulfilled. This inac-
curacy can be worked around introducing an effective value of the power of noise
and an effective number of receivers in the nc-χ distribution [42, 49], both of them
being spatially dependent.

For SENSE, the subsampling/interpolation effects have been previously de-
scribed through the so-called g-factor, a global parameter that explicitly measures
the SNR degradation in the acquisition process [52]. In this work we aim at fully
characterizing the first and second order statistics of noise in SENSE reconstructed
images, including the effects of k-space subsampling and inter-coil noise correla-
tions. Since the reconstruction will take place into the spatial domain, and it can be
seen as a weighted combination of the subsampled coils, the reconstructed image
will be modeled as a complex Gaussian distribution. Its magnitude will be a non-
stationary Rician distribution, with a spatial pattern that we can predict from certain
imaging parameters such as the coils sensitivities and the speed-up factor (first order
characterization). The study will show, in addition, another interesting feature of the
reconstructed image: there exists a strong correlation between adjacent lines in the
reconstructed volume, with an extent directly dependent on the acceleration factor
(second order characterization).
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2 Theory

2.1 Statistical Model of MR signals

The k-space data at each coil of the MR scanner can be accurately described by
a noise-free signal plus an Additive White Gaussian Noise (AWGN) process, with
zero mean and variance σ2

Kl
:

sl(k) = al(k) + nl(k; 0, σ2
Kl

), l = 1, · · · , L (1)

with al(k) the noise-free signal and nl(k; 0, σ2
Kl

) = nlr (k; 0, σ2
Kl

)+jnli(k; 0, σ2
Kl

)
the AWGN process, which is initially assumed stationary so that σ2

Kl
does not de-

pend on k. The complex x-space is obtained as the inverse Discrete Fourier Trans-
form (iDFT) of sl(k) for each slice or volume, so the noise in the complex x-space
is still assumed to be Gaussian:

Sl(x) = Al(x) +Nl(x; 0, σ2
l ), l = 1, · · · , L

where Nl(x; 0, σ2
l ) = Nlr (x; 0, σ2

l ) + jNli(x; 0, σ2
l ) is also a complex AWGN

process (assuming that there are not any spatial correlations) with zero mean and
covariance matrix Σ:

Σ =




σ2
1 σ2

12 · · · σ2
1L

σ2
21 σ2

2 · · · σ2
2L

...
...

. . .
...

σ2
L1 σ

2
L2 · · · σ2

L


 ,

The variance of noise for each coil in k- and x-spaces are related through the number
of points in the image:

σ2
l =

1

|Ω|σ
2
Kl

(2)

with |Ω| the size of the image in each coil, i.e. the number of points used in the 2D
iDFT. If the k-space is fully sampled, the Composite Magnitude Signal (CMS) can
be directly obtained using SoS [27, 38]:

ML(x) =

√√√√
L∑

l=1

|Sl(x)|2. (3)

For a single–coil acquisition, the CMS, M(x), is the Rician distributed envelope
of the complex signal [5]. In the image background, where the signal-to-noise ratio
is zero due to the lack of water-proton density in the air, the Rician simplifies to
a Rayleigh distribution. For multiple coils, if the variance of noise is the same for
all coils, no correlation exists between them, and the signals are combined using
SoS, the CMS may be modeled as a nc-χ distribution [27, 46, 47, 42, 48]. In a
more general case where correlations are taken into account, the nc-χ is only an
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Fig. 1 Example of the SENSE interpolation for 4 coils and an acceleration factor r = 2.

approximation of the real distribution. It can be accurately approximated with this
model if effective parameters (reduced number of coils and and increased variance
of noise) are used [49].

2.2 Statistical model in SENSE reconstructed images

For the sake of simplicy, let us assume that SENSE [32] is only be applied to MRI
data regularly subsampled by a factor r. The reconstruction takes place in the image
domain. Assuming an original size |Ω| = Mx ×My , the subsampled signal in the
x-space SSl (x) = SSl (x, y) is the (complex) Fourier inverse transform of sSl (k), of
size Mx × (My/r) . Note than since the size of subsampled data in each coil in the
x-space is reduced by a factor r, the variance of noise will be umplified by that same
factor:

σ2
l =

r

|Ω|σ
2
Kl

In multiple coil scanners, the image received in coil l-th, Sl(x, y), can be seen as
an original image S0(x, y) weighted by the sensitivity of that specific coil:

Sl(x, y) = Cl(x, y)S0(x, y), l = 1, · · · , L (4)

An accelerated pMRI acquisition with a factor r will reduce the matrix size of the
image at every coil. The signal in one pixel at location (x, y) of l-th coil can be now
written as [34]:

Sl(x, y) = Cl(x, y1)S0(x, y1) + · · ·+ Cl(x, yr)S0(x, yr) (5)

In SENSE, the reconstructed image SR(x, y) can be seen as an estimator of the
original image SR(x, y) = Ŝ0(x, y) that can be obtained from eq. (4). For instance,
for r = 2 for pixel (x, y), SR(x, y) is obtained as



Statistical Noise Analysis in SENSE Parallel MRI 69

SS
1

SS
2

SS
3

SS
4

SS
5

SS
6

SS
7

SS
8

W1

W2
d
a
t
a

fr
o
m

8



o
il
s

SR
1

SR
2

Fig. 2 Example of the SENSE interpolation for 8 coils and an acceleration factor r = 2.

[
SR1
SR2

]
=
[
W1 W2

]
×
[
SS1 · · · SSL

]
. (6)

In matrix form:
SR = W × SS (7)

with W(x, y) = [W1, · · · ,Wr] a reconstruction matrix created from the sensitivity
map of each coil, C(x, y) = [C1, · · · ,Cl]:

W(x, y) = (C∗(x, y)C(x, y))−1C∗(x, y)

If the correlation between coils is taken into account, the reconstruction matrix must
incorporate the covariance matrix:

W(x, y) = (C∗(x, y)Σ−1C(x, y))−1C∗(x, y)Σ−1

For the sake of simplicity, we will remove any pixel dependency, so that we can
write for each output pixel:

SRi = Wi × SS i = 1, · · · , r (8)

Two examples can be found on Fig. 1 and on Fig. 2.
The SNR of the fully sampled image and the image reconstructed with SENSE

are related by the so-called g-factor, g [52, 34]:



70 Aja-Fernández et al.

SNRSENSE =
SNRfull√
r · g (9)

However, we will focus on the actual noise model underlying the SENSE recon-
struction and on the final variance of noise. The final signal SRi is obtained as a
linear combination of SSl , where the noise is Gaussian distributed. Thus, the result-
ing signal is also Gaussian, with variance:

σ2
i = W∗

iΣWi (10)

Since Wi is position dependent, i.e. Wi = Wi(x, y), so will be the variance of
noise, σ2

i (x, y). For further reference, when the whole image is taken into account,
let us denote the variance of noise for each pixel in the reconstructed data by σ2

R(x).
Note now that all the lines SRi reconstructed from the same data SSl will be

strongly correlated, since they are basically different linear combinations of the
same Gaussian variables. In that case, the covariance between SRi and SRj , i 6= j
can be calculated as

σ2
i,j = W∗

iΣWj (11)

and the correlation coefficient is derived straight forward:

ρ2
i,j =

σ2
i,j

σiσj
=

W∗
iΣWj√

(W∗
iΣWi)

(
W∗

jΣWj

) , (12)

However, these correlations are not strongly affecting the data, since the correlated
pixels are separated by Ny/r lines

All in all, noise in the final reconstructed signal SR(x, y) will follow a complex
Gaussian distribution. If the magnitude is considered, i.e. M(x, y) = |SR(x, y)|,
the final CMS will follow a Rician distribution, just like single-coil systems.

We can summarize our developments as follows:

1. Subsampled multi coil MR data reconstruted with cartesian SENSE follows a
Rician distribution in each point of the image.

2. The resulting distribution is non-stationary. This means that the variance of noise
will vary from point to point across the image.

3. The variance of noise final value in each point will only depend on the covariance
matrix of the original data and on the sensitivity map.

4. Each pixel in the final image will be strongly correlated with all those pixels
reconstructed from the same original data. Each pixel is correlated with r − 1
other pixels. These correlated pixels are far enough and they can be neglected.

For the particular case in which there is no correlation between coils and all the
coils has the same noise variance σ2

n, we can write eq. (9) as:

σ2
i = σ2

n × |Wi|2 (13)

Since σ2
n is the noise variance for the subsampled data in the -x-space, according to

eq. (2), it is related to the original noise level without subsampling, say σ2
0 , by the
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subsampling rate:
σ2
n = r · σ2

0

and therefore
σi =

√
r · σ0 × |Wi| (14)

which is totally equivalent to the g-factor formulations for SNR reduction in litera-
ture [32, 43].

3 Materials and Methods

For the sake of validation and illustration of the results in the previous section, the
following experiments are considered:

First, we will study the statistical behavior of Gaussian data when a combination
like the one in SENSE is done. To that end, we consider 105 samples of 8 corre-
lated complex Gaussian RVs with zero mean and unitary variance, N(0, 1) and two
different correlation coefficients, ρ2 = 0 and ρ2 = 0.2. (Note the correlation is be-
tween variables, not between samples of the same variable). The RVs are combined
using real random weights, W1 and W2, both following a uniform distribution in
[0, 1] and normalized so that

|Wi|2 = 1, i = 1, 2

Two new variables are created by using a combination like the one in eq. (6), ob-
taining two new RVs. The sample variance and correlation coefficient are estimated
from the data and then compared to those calculated from eq. (9) and eq. (12).

Secondly, we will test how the values of σ2
R(x) varies across the image. To that

end, we will work with one sensitivity map synthetically generated, as shown in
Fig. 1 (top). This map simulates an 8-coil system using an artificial sensitivity map
coded for each coil so that

∑
l |Cl(x)|2 = 1, with l = 1 · · · , 8, and Cl(x) the

sensitivity map of coil l-th. For the experiment:

• We assume that each coil has an original variance of noise σ2
l = 100. We will

simulate two different configurations, first, assuming that there is no initial corre-
lation between coils, and second, assuming a correlation coefficient of ρ2 = 0.1
between all coils, so that

Σ = 100×




1 0.1 · · · 0.1
0.1 1 · · · 0.1

...
...

. . .
...

0.1 0.1 · · · 1


 .

• From the data, and using the theoretical expressions in eq. (9) and eq. (12) we
calculate the variance of noise for each pixel in the final image.
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Fig. 3 Sensitivity Maps used for the experiment. Top: Synthetic sensitivity map created so that the
SoS of the maps gives a constant image. Bottom: Sensitivity map estimated from an actual brain
imaging acquisition in a SENSE Signa 1.5T scanner with 8 coils.

• In order to test the theoretical distributions, 5000 samples of 8 complex 256×256
Gaussian images with zero mean and covariance matrix Σ are generated. The k-
space of the data is subsampled by a 2x factor and reconstructed using SENSE
and the synthetic sensitivity field. We estimate the variance of noise in each point
using the second order moment of the Rayleigh distribution [47]:

σ2
R(x) =

1

2
E{M2(x)}

We estimate the E{M2(x)} along the 5000 samples.
Last, the previous experiment is repeated for the correlated case, now using real

sensitivity maps as shown in Fig. 1 (bottom). These maps are estimated from a real
brain T1 acquisition done in a GE Signa 1.5T EXCITE, FSE pulse sequence, 8 coils,
TR=500msec, TE=13.8msec, image size 256× 256 and FOV: 20cm×20cm.

4 Results

Experiment Parameter Sample Value Theoretical
ρ2 = 0 σ1 1.0072 1.0000

σ2 1.0023 1.0000
ρ2

1,2 0.9262 0.9247
ρ2 = 0.2 σ1 1.4198 1.4121

σ2 1.4536 1.4412
ρ2

1,2 0.9706 0.9703

Table 1 Results from the first experiment. Standard deviation and correlation coefficient of the
SENSE-like combination of synthetic Gaussian data. Theoretical and sample values.
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Fig. 4 Maps of standard deviation of noise σR(x) in the final image: (a-c-e): Theoretical values.
(b-d-f): Estimated from samples. (a-b) Synthetic Sensitivity Map with no correlation. (c-d) Syn-
thetic Sensitivity Map with correlation between coils. (e-f) Real sensitivity map with correlation
between coils.

The first experiment studies the behavior of a SENSE-like combination of Gaus-
sian data. Results of the standard deviation and correlation for the two resulting
variables are collected in Table 1. As expected, the theoretical values match the es-
timation through samples. Note that the variances in the final RVs in the correlated
case are higher than the ones in the case without correlation. This effect can be
found in real data, where correlations exist and must be taken into account.

The second and third experiments deals with the non homogeneous spatial lay-
out of the noise and the influence of the sensitivity map over the final noise distribu-
tion. Visual results are depicted in Fig 2. For the synthetic maps, when no correla-
tions are considered, since

∑
l |Cl(x)|2 = 1 for all pixels, the final variance of noise

will not depend on the position x. Therefore, in this particular case σ2
R(x) = σ2

R.
The estimated values in Fig 2-(b) show a noise pattern that slightly varies around
the real value (note the small range of variation). In this very particular case, the
noise can be considered to be spatially stationary, and the final image (leaving the
correlation between pixels aside) is equivalent to one obtained from a single-coil
scanner.

When correlations are taken into account, even using the same synthetic sensi-
tivity map, results differ. In Fig. 2-(c), the theoretical value shows that the standard
deviation of noise of the reconstructed data is not the same for every pixel, i.e., the
noise is no longer spatial-stationary. The center of the image shows a larger value
that decreases going north and south. So, in this more realistic case, the σ2

R(x) will
depend on x, which can have serious implications for future processing, such as
model based filtering techniques. The estimated value in Fig. 2-(d) shows exactly
the same non-homogeneous pattern across the image.

In the last experiment, Fig. 2-(e) and Fig. 2-(f), a real sensitivity map is used,
and correlation between coils is also assumed. Again, the noise is non-stationary. To
increase the dynamic range of the images, the logarithm has been used to show the
data.
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5 Discussion and conclusions

Noise analysis in SENSE in literature is usually focused on the study of the SNR
loss due to the acceleration process, being the so-called g-factor the most common
measure. However, despite its proved utility, the g-factor is insufficient when trying
to design certain MR applications. In those cases, the need of a complete statistical
modeling arises naturally. In SENSE, the Rician model has been widely assumed
by the MR community, as seen in recent literature [46, 43]. This assumption has
traditionally been taken as a guarantee to use the methods designed for single coil
MR data over multiple-coil SENSE reconstructed data.

The study of the noise distribution in SENSE carried out in this work has brought
to light some serious implications that must have been taken into account when
working with SENSE data. Even when the final distribution is always Rician, de-
pending on the sensitivity maps and on the coils covariance matrix, this distribu-
tion is likely to be non-stationary. In the examples proposed, even in the optimal
synthetic case, when correlations between coils were present, the non-stationarity
arises. As a consequence, the variance of noise will differ from point to point across
the image. The first implication of this feature is related with noise estimation. Since
the variance of noise depends on the position, most noise estimation techniques, as
the ones proposed in [47], have no longer sense. There is no longer a single value
to estimate for the whole image, but one for each point. Thus, those algorithms that
need an estimation of the level of noise, cannot be used either in its original shape.
See, for instance, those filtering techniques reviewed in the Introduction.

As an example, let us consider a very simple noise reduction technique, the Con-
ventional Approach (CA) for Rician data [4]:

Â(x) =
√
E{M2

L(x)} − 2σ2
n,

whose same philosophy is shared by several other methods mainly based on NLM
denoising [11, 12, 13]. When dealing with SENSE reconstructions, the variance
of noise σ2

n will no longer be unique for the whole image, i.e. σ2
n(x). The noise

estimation is no longer a simple task. Some prior data regulation like the one done
in [63] could be necessary. Note that, even an approach as simple as the CA cannot
be directly applied from the single coil Rician formulation over SENSE data.

To sum up, SENSE MR data is known to follow a Rician distribution, but non-
homogeneity of the variance of noise arises due to the reconstruction process. A
prior knowledge of the sensitivity maps and the coils covariance matrix will help to
properly design applications to deal with this kind of data.
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Noise and Signal Estimation in Magnitude MRI
and Rician Distributed Images: A LMMSE
approach

Santiago Aja-Fernández, Carlos Alberola-López and Carl-Fredrik Westin∗

Abstract A new method for noise filtering in images that follow a Rician model
—with particular attention to Magnetic Resonance Imaging (MRI)— is proposed.
To that end, we have derived a (novel) closed-form solution of the Linear Minimum
Mean Square Error (LMMSE) estimator for this distribution. Additionally, a set of
methods that automatically estimate the noise power are developed. These methods
use information of the sample distribution of local statistics of the image, such as
the local variance, the local mean and the local mean square value. Accordingly,
the dynamic estimation of noise leads to a recursive version of the LMMSE, which
shows a good performance in both noise cleaning and feature preservation. The
paper also includes the derivation of the probability density function of several local
sample statistics for the Rayleigh and Rician model, upon which the estimators are
built.

1 Introduction

Noise in magnitude Magnetic Resonance (MR) images is usually modeled by means
of a Rician distribution, due to the existence of zero-mean uncorrelated Gaus-
sian noise with equal variance in both the real and imaginary parts of the com-
plex k-space data [44, 5]. This noise may affect the performance of different post-
processing techniques applied to MR data, such as segmentation, registration or
tensor estimation in Diffusion Tensor MRI (DT-MRI) [87]. Accordingly, a great
amount of noise-removal methods has been reported in the literature.

One of the first attempts proposed to estimate the magnitude MR image from a
noisy image is due to Henkelman [36] who investigated the effect of noise on MR

∗ This chapter was previously published as: S. Aja-Fernndez, C. Alberola-Lopez and C.-F.
Westin. “Noise and Signal Estimation in Magnitude MRI and Rician Distributed Images: A
LMMSE Approach”, IEEE Trans. on Image Processing, Vol. 17, No. 8, Aug. 2008, pp. 1383-1398.
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magnitude images. The author showed that the noise influence leads to an overes-
timation of the signal amplitude and proposed a correction scheme based on image
intensities. The so-called conventional approach (CA) was proposed by McGib-
ney et al. [4] utilizing the noise properties of the second-order moment. Sijbers et
al. [80, 7, 82] estimate the Rician noise level and perform signal reconstruction
using a maximum likelihood (ML) approach. A similar method is used by Jiang
and Yang [114]. Expectation maximization (EM) formulations with Rician noise
assumptions have been used in SAR imaging [98, 89]. Fillard et al. [110] recently
proposed another ML-based scheme that uses an anisotropic regularization term to
exploit the spatial correlation, and apply it to correct the bias in tensor estimation in
DT-MRI.

Other approaches use wavelet-based methods for noise removal, as Nowak’s [86]
—in which the authors assume an underlying Rician model—- or the one due to
Pižurica et. al [115]. Lysaker et al. [116] proposed a method for noise removal
in MRI using fourth-order partial differential equations. McGraw et al. [117] use
a weighted total-variation-norm denoising scheme and Ahn et al. [118] propose
a template-based filtering procedure; none of this approaches use a Rician noise
model. Basu et al. [87] use a Perona-Malik-like smoothing filter combined with a
local Rician data attachment term (effectively trying to remove the intensity bias
locally), assuming a known noise level for the Rician noise model. Using local
statistics as priors, Awate and Whitaker [119] introduced a method to denoise a
MR image using nonparametric neighborhood statistics. Recently, Koay and Basser
in [48] developed a correction scheme that allows to analytically estimate the sig-
nal, also assuming the Rician model, and in [59] Martin-Fernandez et al. proposed
a Wiener-filter approach with a correction for MRI data.

In this paper we propose a new method for noise filtering of MRI data, and by ex-
tension, of images that follows a Rician distribution, by using the Linear Minimum
Mean Square Error (LMMSE) estimator for Rician noise.

As it is well-known, LMMSE estimators are a trade-off between optimality and
simplicity; we obtain a closed-form analytical solution for our estimator which
makes the filtering process far simpler than other estimation techniques that find the
solution via an iterative optimization scheme. Results from our method are satisfac-
tory as the experiments in Section 5 show. Additionally, the goodness of the filter
will be intrinsically related to the accuracy of the estimation of the noise variance
in the images. In the paper we will present four novel techniques to estimate this
parameter; although three of them rely on the assumption of a uniform background,
none of the cases require any sort of background segmentation.

The paper is organized as follows: Section 2 is a background section on Rician
and Rayleigh distributions and their estimators. In Section 3 the LMMSE estimator
for Rician noise is presented. Then, Section 4 describes the different procedures to
estimate the noise. Some experiments have been added in Section 5. A number of
appendices have been included for readability purposes.
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2 Background

2.1 Rician distributed data

If both real and imaginary parts of a signal are corrupted with zero-mean uncorre-
lated Gaussian noise with with equal variance, the envelope of the magnitude signal
will follow a Rician distribution. This kind of noise may be encountered in many
practical situations, such as MR data, speckle [98], communication fading prob-
lems [120] and many others. The magnitude signal may be expressed

M =
√

(A+ n1)2 + n2
2 (1)

being M the magnitude image, A the original signal level if no noise is present and
n1 and n2 uncorrelated Gaussian noise variables with zero mean and equal variance
σ2
n. The probability density function (PDF) of such an image is, as indicated, a

Rician distribution [44, 45]

pM (M |A, σn) =
M

σ2
n

e
−M

2+A2

2σ2n I0

(
AM

σ2
n

)
u(M) (2)

being I0(.) the 0th order modified Bessel function of the first kind and u(.) the Heavi-
side step function. Although generally speaking the moments of this distribution are
difficult to calculate, the even-order (non central) moments are simple polynomials
as, for instance, he second order moment

µ2 = E{M2} = A2 + 2σ2
n (3)

In the image background, where the signal-to-noise ratio is zero due to the lack of
water-proton density in the air, the Rician PDF simplifies to a Rayleigh distribu-
tion [45] with PDF

pM (M |σn) = pM (M |A = 0, σn) =
M

σ2
n

e
− M2

2σ2n u(M). (4)

2.2 Parameter estimation of the Rician distribution

In this section we review a number of methods to estimate parameters in a Rician
distribution. Although many approaches have been reported in the literature (see, for
instance, the papers cited in the introduction) we will focus now only on those based
on a stochastic model. Most of the papers cited hereafter focus on MRI processing,
although some of them deal with other type of images, such as SAR [98].

The Conventional Approach (CA) [4] accounts for the relation between noise and
signal of the second order moment in a Rician distribution, see eq. (3), so the signal
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can be estimated as
Â =

√
〈M2〉 − 2σ2

n (5)

being 〈M2〉 the sample second order moment. Other approaches use the Maximum
Likelihood estimator (ML) [80, 7, 82, 114] where the signal is estimated by maxi-
mizing the likelihood function. Koay and Basser in [48] propose an analytically ex-
act solution assuming a Rician noise model based on image statistics and the noise
level. In these three methods the variance of noise σ2

n is an input value, so it must be
known before hand, or at least, it must be estimated. The Expectation-Maximization
(EM) method [98, 89] provides a recursive scheme that aims at estimating the noise
variance and the signal simultaneously through maximization of the expected log
likelihood.

Note that the last three schemes (ML, EM and Koay’s) are originally designed
to estimate the signal from multiple samples. When only one image is available, the
statistics must be calculated locally. In addition, in the three methods the solution is
found via an iterative optimization scheme.

The different methods reported to estimate σ2
n from the magnitude data in Rician

distributions may be roughly divided into two vast groups, namely, those that use a
single magnitude image and those that use multiple images. In this paper we will
mainly deal with methods in the former group.

The estimation of noise in MRI using a single image is usually done out of the
background pixels, where the signal is assumed to be zero. According to eq. (3), in
the areas where the signal is zero A2 = 0, and then E{M2} = 2σ2

n. So a straight-
forward estimator —based on the method of moments— will be [7, 86, 81]

σ̂2
n =

1

2N

N∑

i=1

M2
i (6)

being N the number of points considered for the estimation. Eq. (6) is in fact, an
unbiased estimator of σ2

n with variance

Var
(
σ̂2
n

)
=
σ4
n

N
(7)

This estimator is also the Maximum Likelihood estimator of this parameter for the
Rayleigh distribution [7].

An alternative way to estimate σn in non-signal areas is obtained by using the
first order moment of the Rayleigh PDF. An unbiased estimator then will be [7]

σ̂n =

√
2

π

1

N

N∑

i=1

Mi (8)

In [114] the authors propose an estimator based on the method of moments for a
Rician distribution

σ̂n
2 =

1

2

(
〈M2〉 −

(
2〈M2〉2 − 〈M4〉

)1/4)
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Recently Sijbers et al. [83, 84] proposed a new method to estimate σn from the im-
age histogram. As in the background the image distribution is Rayleigh, and since
the mode of this distribution equals the parameter σn, then σ̂n = Mmax, being
Mmax the mode of the histogram of the image. Noise can also be estimated us-
ing multiple images taken under identical conditions [81]. Finally, in [14] noise is
estimated by using the information of several images and how they match a model.

3 Signal estimation: the LMMSE estimator

The method proposed in this paper to estimate the signal from the magnitude image
is based on the Linear Minimum Mean Square Error (LMMSE) estimator [121]. Our
aim is to find a closed-form estimator for a signal that follows a Rician distribution.
This is in contrast to many other estimation techniques —such as ML and EM—
which find the solution via an iterative optimization scheme. Closed-form solutions
make estimation methods computationally more efficient than optimization-based
solutions. In addition, the estimator will be based on local statistics, so one single
(noisy) image —as opposed to several perfectly aligned images— will suffice to
estimate the signal.

As previously stated, the moments of the Rician distribution have a non-trivial
integral expression but for even-order moments, which are simple polynomials. In
order to achieve a closed-form expression we will use A2 instead of A. Conse-
quently, all the moments to be used hereafter will be even.

3.1 LMMSE filter derivation for the general Rician model

The LMMSE estimator2 of a parameter θ is defined [121]

θ̂ = E{θ}+ CθxC−1
xx (x− E{x}) (9)

being x the vector of available samples, Cxx the covariance matrix of x and Cθx the
cross-covariance vector. Rewriting eq. (9) for a 2D signal with a Rician distribution

Â2
ij = E{A2

ij}+ CA2
ijM

2
ij

C−1
M2
ijM

2
ij

(
M2

ij − E{M2
ij}
)

(10)

whereAij is the unknown intensity value in pixel ij and Mij the observation vector.
If the estimator is simplified to be pointwise, vectors and matrices become scalar
values. Then

2 As it is well known, this type of estimators model the parameter to be estimated as a sample
of a random variable, the parameters of which have a known relation with the parameters of the
observation [121].
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CM2
ijM

2
ij

= E{
(
M2

ij − E{M2
ij}
) (

M2
ij − E{M2

ij}
)T }

= E{
(
M2
ij − E{M2

ij}
)2} = E{M4

ij} − E{M2
ij}2

= CM2
ijM

2
ij

CA2
ijM

2
ij

= E{
(
A2
ij − E{A2

ij}
) (

M2
ij − E{M2

ij}
)T }

= E{
(
A2
ij − E{A2

ij}
) (
M2
ij − E{M2

ij}
)
}

= CA2
ijM

2
ij

and making use of the model in eq. (1)

CA2
ijM

2
ij

= E{A4
ij}+ 2E{A2

ij}σ2
n − E{A2

ij}E{M2
ij}

Finally, the LMMSE estimator is

Â2
ij = E{A2

ij}+
E{A4

ij}+ 2E{A2
ij}σ2

n − E{A2
ij}E{M2

ij}
E{M4

ij} − E{M2
ij}2

(
M2
ij − E{M2

ij}
)

(11)
Assuming local ergodicity, the expectation may be replaced by its sample estimator
〈.〉, that can be defined

〈Ii,j〉 =
1

|ηi,j |
∑

p∈ηi,j

Ip (12)

with ηi,j a square neighborhood around the pixel ij. This estimation may be also
done using non-square weighted windows, such as Gaussian functions. Using the
relations from eq. (1)

E{M2
ij} = E{A2

ij}+ 2σ2
n

E{M4
ij} = E{A4

ij}+ 8σ2
nE{A2

ij}+ 8σ4
n

and 〈.〉, the LMMSE estimator may finally be written as

Â2
ij = 〈M2

ij〉 − 2σ2
n +Kij

(
M2
ij − 〈M2

ij〉
)

(13)

with Kij

Kij = 1−
4σ2

n

(
〈M2

ij〉 − σ2
n

)

〈M4
ij〉 − 〈M2

ij〉2
. (14)

Note that the σ2
n value must be properly estimated. This task is usually done from

a selected region from the background pixels, where the signal is assumed zero. In
Section 4 some new automatic methods will be presented.

Since only pointwise dependence has been considered in the filter, the extension
to an arbitrary number of dimensions is straightforward by changing the estimation
neighborhood. For example, for 3D images
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〈I〉 =
1

|ηijk|
∑

p∈ηijk

Ip

Some experiments have been done in section 5.1 to illustrate the LMMSE filtering
performance.

4 Estimation of noise using local statistics

The performance of the estimator previously described, as well as other methods in
the literature, is directly related to the quality of the estimate of the noise variance
σ2
n. Noise estimation schemes described in section 2.2 (but the one in [83]) have

some disadvantages: they need the background pixels of the image to be manually
selected and the estimation is done considering that the signal is always zero in the
background pixels. These two considerations make the estimate sensitive to errors
and artifacts. In this section we will propose a new approach based on local statistics.
We will estimate the noise using the distributions of some sample local statistics
of the image, such as the sample second order moment, the sample mean and the
sample variance.

Using the second order moment and the mean we will develop two estimators
that can be used only when the image has a background where the distribution can
be assumed Rayleigh (i.e., a non-signal background). This is the case of many MR
magnitude images. Then, we will define a variance-based estimator that can be used
with any kind of image that follows a Rician distribution.

4.1 Noise estimator based on the local second order moment

Taking expectations in eq. (1) for zero-mean and equal variance noise components
we obtain

E{M2
i,j} = E{A2

i,j}+ 2σ2
n (15)

being E{I2
i,j} the local second order moment of an image I . It may be estimated

using a neighborhood ηi,j centered around the pixel under analysis giving rise to

µ̂2i,j = Ê{I2
i,j} = 〈I2

i,j〉. For the sake of simplicity we will use a square neighbor-
hood, as in eq. (12).

If we assume that σn is constant throughout the image, the effect of the noise
over the local second order moment distribution will be a shift to higher values. In
those regions where Ai,j = 0, it holds

E{M2
i,j} = 2σ2

n

This fact has been used in the past to estimate the noise from MRI by selecting areas
in the background (see Section 2.2). In this new approach, we will not be working
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with selected regions, but with the distribution of the local statistics of the whole
image.

As an effect of the noise, the shape of the local second order moment distribution
remains fairly unchanged in the noisy image with respect to that in the original im-
age, but for a right-shift of the whole distribution. See, for instance, the distribution
of this moment for the image in Fig. 1 when Rician noise is present; this is depicted
in Fig. 2-(a).

Fig. 1 Original image (left) and noisy counterpart (right) with σn = 10.
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Fig. 2 Distribution of the local second order moment. (a) Lenna image without noise (solid) and
with Rician noise with σn = 10 (dashed). (b) MR image without noise (solid) and with noise
(dashed), with σn = 10. A 7× 7 window has been used.

However, in MR images —see for instance Fig. 3, taken from the BrainWeb
database [53]—, due to the presence of an extensive background in which the signal
is virtually zero, the distribution of the local second order moment of the original
image will have a maximum in the origin, as shown in Fig. 2-(b) solid line. If the
image is corrupted with Rician noise with σn = 10, the effect, according to eq. (15),
will be a shift of the maximum from zero to 2σ2

n. This effect can be seen in Fig. 2-
(b), dashed line, where the distribution of the local second order moment shows a
bell shape with its maximum in 200, with in fact is 2σ2

n when σn = 10.
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Fig. 3 Original magnitude MRI from the BrainWeb database (left) and noisy one (right) with
σn = 10.

So, the position of this maximum may be used in order to estimate σ2
n:

σ̂2
n =

1

2
arg max{p(µ̂2)}

being p(µ̂2) the distribution of the sample (local) second order moment of the noisy
image. This maximum may be calculated as the mode of the distribution.

To analyze this assumption let us calculate the theoretical value of the mode.
In MR images, the pixels in the background follow a Rayleigh distribution. So, let
Ri(σ

2), i = {1, · · · , N} be a set of independent and identically distributed (IID)
Rayleigh random variables. Then [122]

N∑

i=1

R2
i (σ

2) ∼ γ(N, 2σ2), S =
1

N

N∑

i=1

R2
i (σ

2) ∼ γ
(
N,

2σ2

N

)

i.e., the sample local second order moment of a Rayleigh distribution follows a
Gamma distribution with parameters α = N and β = 2σ2

N . The mode of this dis-
tribution is defined as mode(S) = (α − 1)β, so, the mode of the sampling second
order moment will be

mode(µ̂2i,j) =
N − 1

N
2σ2

n

If we redefine the estimator of the moment as

µ̂2 =
1

N − 1

N∑

i=1

R2
i (σ

2) (16)

then
mode(µ̂2i,j) = 2σ2

n

and
σ̂2
n =

1

2
mode(µ̂2i,j) (17)

To verify this hypothesis an experiment has been carried out for 40 different
variances of noise. The MR image in Fig. 3 has been normalized between 0 and 1.
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Local moments are calculated using 7× 7 windows. For each σ2
n we would take the

average value of 100 simulations. In Fig. 4-(a) the estimated variance is depicted
versus the original one. In Fig. 4-(b), as a quality measure, we show the ratio Q =
σ̂n/σn.

0 0.005 0.01 0.015 0.02 0.025
0

0.005

0.01

0.015

0.02

0.025

σn
2

σ
n2   

 e
st

im
at

ed

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

σn

Q

(b)

Fig. 4 Estimation of variance of noise using the mode of the local second order moment. (a) σ̂2
n

vs. σ2
n. (b) σ̂n/σn vs. σn

Let us now study how the window size affects the estimation. According to eq. (7)
the variance of the estimator is inversely proportional to the number of points used.
So, as far as ergodicity is maintained within the window, the estimation should be
better for larger window sizes. However, the influence of the window size is not
paramount in this new estimator, as only the maximum of the distribution is consid-
ered.
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Fig. 5 (Normalized) local second order moment distribution of the noisy image with σn = 10
using 3 × 3 window (dashed), 7 × 7 window (solid),11 × 11 window (dash-dotted) and 21 × 21
window (dotted). (a) Normalizing by N (b) Normalizing by N − 1, as in eq. (16).
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As an illustration, we have calculated the local second order moment distribution
of the noisy image using square windows of different sizes. The result is in Fig. 5.
The effect of increasing the size of the window is that the function goes narrower,
as an effect of the decrease in the variance. However, its maximum is fixed to the
same value.

4.2 Estimator based on the local mean

Following a similar reasoning to the one done in the previous section, we can define
a local measure based on the estimator of eq. (8). This estimator is also based on
the assumption that the distribution in the background of an MR image follows a
Rayleigh distribution. Due to the influence of the pixels in this background, when
the local mean distribution of a non-noisy MRI is depicted, it presents a maximum
around zero (see Fig. 6-(a), solid line). When the image is corrupted with Rician
noise, this maximum is now shifted to a value related to σn (see the dotted line in
Fig. 6-(a)). As the mean of a Rayleigh distribution is defined as µ1 = σn

√
π/2,

following a similar reasoning as the one done in the previous section, we can define
a new estimator

σ̂n =

√
2

π
arg max{p(µ̂1)}

being p(µ̂1) the distribution of the sample local mean. The maximum may be cal-
culated as the mode of the distribution:

σ̂n =

√
2

π
mode(µ̂1i,j) (18)
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Fig. 6 (a) Sample local mean distribution of the image without noise (solid-bold) and with noise

(dashed), with σn = 10. (b) Normalized distribution of
√

2
π
µ̂1i,j of the noisy image with σn =

10. Window size: 3× 3 (dashed), 7× 7 (solid), 11× 11 (dash-dotted) and 21× 21 (dotted).
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To study this assumption, let us analyze the PDF of the sample local mean. Let
Ri(σ

2), i = {1, · · · , N} be a set of IID random variables with Rayleigh distribution
and

S =

N∑

i=1

Ri(σ
2)

The sum of Rayleigh variables is a classical-hard-to-find problem in communica-
tions. Some approximations are usually employed, as the one in [123]

pS(x) =
x2N−1e−x

2/2bN

2N−1NNbN (N − 1)!
(19)

b =
σ2

N
[(2N − 1)!!]

1/N (20)

which can be approximated by b ≈ σ2 2
e (see appendix 7.1). The mode of the distri-

bution is defined as mode(S) = arg maxx{pS(x)}, so

mode(S) = σn

√
2(2N − 1)N

e

which can be approximated when N >> 1 by mode(S) ≈ σn 2N√
e

. Therefore, as the
sample mean is defined µ̂1 = 1

N S the noise estimator becomes

σ̂n ≈
√
e

2
mode(µ̂1i,j) (21)

Note than in this approximation, the factor is
√
e

2 = 0.8244, and in eq. (18) the

factor is
√

2
π = 0.7979. This small difference is due to both the approximation in

the PDF and to the simplifications made to obtain the mode. In what follows we will
use the estimator in eq. (18), as it experimentally shows a better behavior.

To test this estimator a new experiment has been carried out for 40 different
standard deviations of noise. The MR image has been normalized between 0 and 1.
Local moments are calculated using 7× 7 windows. For each σn we would take the
average value of 100 simulations. In Fig. 7-(a) the estimated standard deviation is
depicted vs. the original one. In Fig. 7-(b), as a quality measure, we show the ratio
σ̂n/σn.

As in the previous case, the effect of changing the size for the window used for
estimation —see Fig. 6-(b)— is a change in the width of the distribution, but in any
case, the maximum stays on the same value.
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Fig. 7 Estimation of standard deviation of noise using the mode of Q̂Ei,j . (a) σ̂n vs. σn. (b)
Q = σ̂n/σn vs. σn.

4.3 Estimation based on the local variance

The estimators previously introduced require a Rayleigh distributed area, i.e. an area
in which Aij = 0. In this section we introduce a new estimator that can be used in
signals with general Rician noise. However, we will first study the case of images
with zero background.

The distribution of the local variance for most non-noisy images, is a decreasing
function with its maximum in zero (see appendix 7.2 for details). When corrupted
with noise, the distributions present a bell-shape distribution whose maximum is
located in a point that should be related to σ2

n. An illustration is depicted in Fig. 8.
We will take advantage of this feature for both estimators.
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Fig. 8 Sample local variance distribution. (a) MRI with Rician noise. (b) Lenna Image with Rician
noise. Original image (solid), Rician noise with σn = 10 (dash-dotted), with σn = 20 (dotted) and
with σn = 40 (dashed).
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4.3.1 Local variance in MR data

In the background of MR data the variance reduces to the variance of a Rayleigh
distribution, which is defined

σ2
M = σ2

n

(
2− π

2

)
(22)

In the pixels belonging to the background then

σ2
n = σ2

M

(
2− π

2

)−1

(23)

If the background of the image is properly segmented, it can be used to estimate
the variance of noise using eq. (23). However, the segmentation is not necessary if
we follow a philosophy as the one stated in the previous sections. If the variance is
estimated locally, say σ2

Mij
, we can define the variance of noise as

σ̂2
n =

(
2− π

2

)−1

mode
(
σ2
Mij

)
(24)

Actually, the maximum values of the distributions in Fig.8-(b) are located at in(
2− π

2

)
σ2
n.

To give a theoretical justification to this solution it would be interesting to study
the distribution of the sample variance when the samples are Rayleigh random vari-
ables (if they are Gaussian, the result is well known [122]). The distribution of the
sample local variance for Rayleigh random variables is (see appendix 7.3 for details)

pV (x) = CV e
− xN

2σ2

N−1∑

k=0

(2N − 2− k)!

k!(N − 1− k)!

[(
1 +

e

2

) xN
2σ2

]k
(25)

being

CV =
N

2σ2

1

(N − 1)!

(2/e)N−1

(1 + 2/e)2N−1

In order to find the maximum independently of the value of σ, we make the change
t = xN

2σ2

fV (t) = CV e
−t

N−1∑

k=0

(2N − 2− k)!

k!(N − 1− k)!

[(
1 +

e

2

)
t
]k

(26)

We have numerically calculated the maximum of this function which is

tmax ≈ 0.26× (N − 1) ≈
(

1− 2

e

)
(N − 1)

In Fig. 9 the function in eq. (26) has been depicted for N = 25 (dash-dotted),
N = 49 (dashed) and N = 81 (solid). To avoid the dependence with N , the x-axis
has been normalized by N −1. The maxima of the functions for the different values
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Fig. 9 (Normalized) function of eq. (26) for N = 25 (dash-dotted), N = 49 (dashed) and N = 81

(solid). The x-axis has been normalized by N − 1.

ofN are all located on the same point, around 0.26. So, the mode of the distribution,
after the variable change, will be

mode(V ) = xmax ≈ 0.52
N − 1

N
σ2 ≈

(
2− 4

e

)
N − 1

N
σ2

Note that the N in the denominator is due to the fact that we have used the biased
variance. Similarly as in the case of the sample mean, due to the approximation,
the solution is not exactly what it should be, as

(
2− π

2

)
≈ 0.42. Previously, in

eq. (21), we have seen that
√
e/2 was in fact an approximation of

√
2/π, due to

some approximation in the analysis. Note that the parameter we are using for the
variance analysis is now e/2 = 2(

√
e/2)2. If we use 2(

√
2/π)2 = 4/π instead, the

numerical analysis sets the maximum in

tmax ≈ 0.21(N − 1) ≈
(

1− π

4

)
(N − 1)

being the mode

mode(V ) ≈ 0.42
N − 1

N
σ2 ≈

(
2− π

2

) N − 1

N
σ2

Due to experimental results, we define the estimator as in eq. (24).
To test this estimator a new experiment has been carried out for 40 different

standard deviation of noise. The MR image has been normalized between 0 and 1.
Local moments are calculated using 7× 7 windows. For each σn we would take the
average value of 100 simulations. In Fig. 10-(a) the estimated standard deviation is
depicted versus the original one. In Fig. 10-(b), as a quality measure, we show the
ratio σ̂n/σn.
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Fig. 10 Estimation of standard deviation of noise using the mode of the sample variance. (a) σ̂n
vs. σn. (b) Q = σ̂n/σn vs. σn.

4.3.2 Local variance in Rician images

Let us now focus on those images with Rician noise in which the assumption of a
low SNR background does not hold. As a result, the variance of noise cannot be
estimated using the second order moment, nor the local mean, but it can be done
using the variance.

Although most of the images we usually deal with are images that do not have a
uniform background, they do have a great amount of uniform areas. By uniform area
we mean areas of the image without borders and with soft transitions. This means
that, if no texture is present, the distribution of the local variances will have its
maximum value in the vicinity of zero. To illustrate this statement, see for instance
the sample local distributions of Lenna and the MR (non-noisy) images in Fig 8
(solid line), where it can be seen that most values are nearly zero, as expected. This
exponentially decreasing histogram may be observed in a wide range of images,
from natural scenes to medical images (see appendix 7.2). An exception to this is
obviously the case of pictures of complex textures, for which intensity variability is
considered signal content. We must remark that this assumption does not mean that
the estimation is to be done in one specific area assumed constant; the estimation
will be done using the whole variance histogram and it will not require any previous
selection of any area.

With this assumption in mind, we will first approximate the variance of a Rician
model, to afterwards study the sample variance. The mean of a Rician distribution
is given by

µ1 = E{M} = σn

√
π

2
e
− A2

4σ2n

[(
1 +

A2

2σ2
n

)
I0

(
A2

4σ2
n

)
+

A2

2σ2
n

I1

(
A2

4σ2
n

)]
(27)

In order to obtain an approximation of the behavior of the variance of the image, we
will consider the asymptotic expansion of the Bessel functions [124]:
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In(z) ≈ ez√
2πz

(
1− 4n2 − 1

8z

)
, z →∞ (28)

It implies that A2
ij � σ2

n. After some algebra

σ2
M ≈ σ2

n

(
1− 5

4

σ4
n

A2
− · · ·

)
(29)

A natural image, like Lenna, has a distribution ofE{A2
ij} as the one in Fig. 8-(a).

This means that if we take local statistics E{A2
ij} > σ2

n for the great majority of
the pixels, and even E{A2

ij} � σ4
n. So, in those points we can say that

σ2
Mij
≈ σ2

n (30)

and accordingly, if the variance of the signal is estimated locally, the variance of
noise can be estimated as

σ̂2
n = mode(σ2

Mij
) (31)

The maximum values of the distributions in Fig.8-(a) are located at σ2
n.

What we have done here is similar to consider the rough approximation of the
noise being Gaussian when the SNR is high. This way, the sample variance has a
gamma distribution [122] with mode

mode(σ2
M ) = σ2

n

N − 3

N − 1

In Fig. 11 the local variance distribution of a noisy image has been calculated using
square windows of different sizes: 5× 5 (dashed), 9× 9 (solid) and 21× 21 (dash-
dotted) applying the N−3

N−1 correction.
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Fig. 11 Normalized local variance distribution of the Lenna image with Rician Noise (σn = 15)
using 5×5 (dashed), a 9×9 (solid) and 21×21 (dash-dotted) windows. N−3

N−1
correction has been

applied.
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To completely justify this result, we need to calculate the distribution of the sam-
ple variance for the Rician model. This is not an easy task, though some approxi-
mations have been done in Appendices 7.4 and 7.5, where we show that the sample
variance PDF for this model may be written as

pV (t) ≈ CT e−t
2N−1

4∑

m=0

( 2N−1
4

m

)
tm(1 +N)mΓ (2N − 1/2−m)

with t = xN
2σ2
n

. Numerically, it is easy to proof that tmax = N−3
2 So the mode of the

variance distribution will be

mode(V ) =
N − 3

2

2σ2
n

N
=
N − 3

N
σ2
n

Note that if the unbiased sample estimator is used, mode(V ) = N−3
N−1σ

2
n

To verify this hypothesis an experiment has been carried out for 40 different
variances of noise. The Lenna image has been normalized between 0 and 1. Local
variance is calculated using 7× 7 windows. For each σn we would take the average
value of 100 simulations. In Fig. 12-(a) the estimated variance is depicted versus the
original one. In Fig. 12-(b), as a quality measure, we show the ratio σ̂n/σn.
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Fig. 12 Estimation of variance of noise using the mode of the local sample variance in the Lenna
image. (a) σ̂n vs. σn. (b) σ̂n/σn vs. σn

4.4 Connection between the two variance models

Two models have been presented for signal estimation based on the mode of the
local sample variance. The first one is based on the assumption that the image has
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Fig. 13 Noise image with σn = 15 and different background size added.

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

 

 

Fig. 14 Normalized local variance distribution of the lenna image with Rician noise. Without extra
background (solid) with background (dashed) and with a greater background (dash-dotted).

a background where the Rician model tends to be Rayleigh; the second one is for
images without such a background.

To study the behavior of the local variance in relation with the background, an
experiment has been done. A black background has been added to the Lenna image,
having a MR-like image. Rician noise with σn = 15 has been added (see Fig. 13).
The distribution of the local variance is shown in Fig, 14. We can see that there
is a maximum set around σ2

n, as the second model stated, but in addition, a new
maximum appears when the background is added. This new maximum will be set
on σ2

n

(
2− π

2

)
, the value predicted by the first model. So, depending on the back-

ground, the local variance distribution will be a multimodal distribution, being the
local maxima placed on σ2

n

(
2− π

2

)
and σ2

n respectively. The global maxima will
be in the mode with the highest coverage.
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5 Experimental results

5.1 Synthetic experiments

Some experiments are carried out to illustrate the LMMSE filtering behavior. To
be able to compare the results to a ground truth, we work with synthetic images
artificially corrupted with noise. A magnitude MR image originally noise-free (from
the BrainWeb database [53]) with 256 gray levels, is corrupted with Rician noise, see
Fig. 15-(a) and 15-(b), following the model in eq. (1). The noisy image is processed
using different techniques. Many methods to restore a noisy MR image have been
reported. For our experiments we will select those related somehow with the method
proposed in this paper. First, those stochastic schemes based on the Rician Model:

1. The Conventional Approach (CA) by McGibney et al. [4].
2. The Maximum Likelihood Estimator (ML) [80, 7, 82, 114].
3. The Expectation-maximization Method (EM) [98, 89].
4. The Analytically Exact Solution, proposed by Koay and Basser in [48].

In all the cases where the variance of noise is needed, it is manually set to its op-
timal value. Note that the ML and EM estimators, as well as the method by Koay
and Basser are designed to work with several samples of the same image. As in the
present experiment we suppose only one sample is available, the statistics are com-
puted using local neighborhoods. In all cases 5× 5 neighborhoods have been used.
To compare the filters with other techniques:

5. Adaptive Wiener Filtering [125], using a 5× 5 neighborhood. In order to achieve
the best performance of the filter, σn is manually set to the actual value.

6. The wavelet domain noise filter for medical imaging proposed by Pižurica et al.
in [115]. The best results for this experiment are achieved usingK = 5 and 5×5
window size.

And finally, the LMMSE based schemes:

7. The LMMSE Estimator, as proposed in eq. (13), with σn manually set to the
actual value. 5× 5 neighborhood.

8. The LMMSE Estimator, as proposed in eq. (13), with σn automatically estimated
using eq. (18). 5× 5 neighborhood both for filtering and noise estimation.

9. The LMMSE Estimator, as proposed in eq. (13), with overestimation of noise,
manually setting the standard deviation of noise to σn + 20.

10. Although once the image is filtered with the LMMSE estimator the output model
is no longer Rician, or at least nothing assures it is, we can think in making the
filter recursive. As the noise is dynamically estimated in each iteration, the filter
should reach a steady state as the estimated noise gets smaller and smaller. As a
result, if a proper noise estimation is done, the filter should stop modifying the
input image once the noise is eliminated. We define then a recursive LMMSE
(RLMMSE). For the experiments 8 and 50 iterations are considered, and a 5× 5
neighborhood has been used both for filtering and noise estimation.
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σn = 10 σn = 20

SSIM QILV MSE SSIM QILV MSE
Noisy 0.7904 0.9890 100.2940 0.5722 0.9251 395.0881
CA 0.8491 0.6430 192.1922 0.8236 0.6543 205.6214
EM 0.8685 0.6513 144.1177 0.8373 0.6342 168.0615
Koay 0.8424 0.6026 212.4360 0.8024 0.5259 290.9409
ML 0.8681 0.6516 144.2500 0.8370 0.6354 168.1712
Wiener 0.9092 0.9839 57.9197 0.8146 0.9076 161.8120
Wavelet 0.8723 0.9889 51.8368 0.7695 0.9441 132.4157
LMMSE (Overestimation) 0.8107 0.8206 229.0185 0.7465 0.7077 376.9618
LMMSE (Manual noise) 0.9168 0.9921 53.9731 0.8346 0.9613 130.5361
LMMSE (Automatic noise) 0.9177 0.9921 53.6904 0.8389 0.9606 128.1376
RLMMSE (8 steps) 0.9270 0.9917 51.8197 0.8597 0.9502 122.5699
RLMMSE (50 steps) 0.9298 0.9915 51.8487 0.8540 0.9429 129.5132

Table 1 Quality measures for the synthetic experiment: SSIM, QILV and MSE for the MR image
with Rician noise. Two different σn values have been considered. In bold face the best value of
each column. LMMSE-based schemes show better results in terms of noise removal and edge
preservation.

To compare the restoration performance of the different methods, two quality
indexes are used: the Structural Similarity (SSIM) index [126] and the Quality In-
dex based on Local Variance (QILV) [127]. Both give a measure of the structural
similarity between the ground truth and the estimated images. However, the former
is more sensitive to the level of noise in the image and the latter to any possible
blurring of the edges. This way we are able to assess the noise cleaning and border
preserving capability of the different schemes. Both indexes are bounded; the closer
to one, the better the image. In addition, the mean square error (MSE) is also cal-
culated. To avoid any bias due to background, these three quality measures are only
applied to those areas of the image inside the skull.

Table 1 shows the experimental results of the average of 100 experiments for two
different values of σn. The best value of each column has been highlighted. Some
graphical results for σn = 10 are shown in Fig 15.

When compared with other schemes considering a Rician noise model with
proper noise estimation, the LMMSE and the RLMMSE show a better performance
in terms of noise cleaning (a larger SSIM) while the edges are preserved (the QILV
value gets better). However, when noise estimation is incorrectly done (as in Fig. 15-
(h) for the case of noise overestimation), the noise in the background is even ampli-
fied while the inner edges are blurred.

The noise cleaning performance of the ML, EM and Koay schemes are good,
but, as the QILV index points out, they cause image blurring. Consequently, image
information is lost at the border and the image edges. This performance is not due to
the schemes themselves, but to the fact that they are originally designed to estimate
the signal from multiple samples. When only one image is available, the statistics
must be calculated locally. Consequently this local estimation produces some edge
smoothing, in some cases similar to the one produced by a Gaussian filter. LMMSE,
although it is also based on local statistics does not show this edge-blurring behavior.
This is one of the arguments for using LMMSE when only one sample is available.
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(a) Original (b) Noisy (c) CA (d) ML

(e) EM (f) Koay (g) Wavelet (h) LMMSE (Wrong)

(i) LMMSE (Manual) (j) LMMSE (auto) (k) RLMMSE (8) (l) RLMMSE (50)

Fig. 15 Experiment with synthetic noise. MRI from Brainweb (Detail). (a) Original Image. (b)
Image with Rician noise with σn = 10. (c) Conventional approach. (d) ML estimator. (e) EM
method. (f) Koay’s method. (g) Wavelet Domain Noise filter. (h) LMMSE estimator with noise
overestimation (σn = 30). (i) LMMSE estimator with σn = 10 (manually set). (j) LMMSE
estimator automatic noise estimation. (k) Recursive LMMSE (8 iterations). (l) Recursive LMMSE
(50 iterations). The LMMSE filters with correct noise estimation show the best performance, as
confirmed by the numerical results in Table 1.

It is interesting to study the performance of the Wiener filtering; although it
slightly blurs the image, it shows an overall good performance. Its performance
is worse than the LMMSE, because the Wiener filter is based on a Gaussian noise
model. This mismatch between the Rician model and the Gaussian model is not too
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large in structural MRI, but becomes more important in other kind of images, like
Diffusion Weighted Images (DWI).

On the other hand, the Wavelet based filter shows also a good behavior, both in
edge preservation and noise cleaning, though the quantitative quality indices are a
bit lower than those of the proposed schemes. In addition, the filter has a parameter
K that has to be manually tuned to achieve the best results.

Finally, the RLMMSE results show a very good performance, when compared
with the other schemes. There is a good balance between noise cleaning (SSIM
index) and edge and structural information preservation (see QILV values). In ad-
dition, the filter shows great numerical stability: after 50 iterations the results are
similar to those after 8 iterations, indicating that the filter reaches a steady state.

One main advantage of the LMMSE filter (and to some extent for the RLMMSE
filter) is that the solution can be computed in one single step (or a few steps for
the RLMMSE filter), making it computationally efficient for large data sets as fre-
quently encountered in DWI. This is in contrast to the EM and ML schemes, as well
as to the approach by Koay and Basser, where the solution is found by numerical
optimization and thus iteratively.

A further comparison has been done with the Wavelet based filter. The brain
image used in [115] has been used as ground truth, see Fig. 16. The image is arti-
ficially corrupted with Rician noise with different values of σn; from 1 to 30. The
noisy image is filtered using the wavelet filter (with K = 2), the LMMSE scheme
and a RLMMSE with 5 iterations and noise estimation using eq. (18). In every case,
a 5 × 5 window has been used. The average of the quality measures of 100 exper-
iments for each σn value is depicted in Fig. 17. Results show a better performance
of both LMMSE schemes.

Fig. 16 Original MRI image from [115].



102 Aja-Fernández et al.

5 10 15 20 25 30

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ
n

S
S

IM

Noisy
Wavelet
LMMSE
RLMMSE

(a) SSIM

5 10 15 20 25 30
0.85

0.9

0.95

1

σ
n

Q
IL

V

Noisy
Wavelet
LMMSE
RLMMSE

(b) QILV

5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

450

500

σ
n

M
S

E

Noisy
Wavelet
LMMSE
RLMMSE

(c) MSE

Fig. 17 Comparition between LMMSE and Wavelet-based schemes. Different values of σn have
been considered.

A next synthetic experiment is done using a 3D ball, where Rician noise has been
included (see Fig. 18). The image is filtered using a 3D version of the filter and a
5× 5× 3 window. As no zero background is available, the noise estimation is to be
done following the method in eq. (31). After 10 iterations, the result is the image in
Fig. 18-right.

SSIM and QILV have been used again as quality indices. 19 iterations of the
3D RLMMSE filter have been done, with adaptive noise estimation; results are in
Fig. 19. After 4 or 5 iterations the filter reaches the optimum value. If we keep on
filtering, the effect will be just a slight blurring of the image.

Fig. 18 One slice of a 3D volume. Original image (left), image with Rician noise (center) and
filtered after 10 iterations (right).
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Fig. 19 SSIM index (left) and QILV index (right) of the 3D noisy ball. There is a noise cleaning
as well as the structural information is maintained

5.2 Estimation using the background

The methods for noise estimation in MRI described so far have the advantage that
they do not need a mask to be segmented in order to estimate the noise. So, they can
be easily used in any automatic procedure. This is one of the advantages of these
methods over the traditional ones described before.

If the background of the image may be isolated, the estimation can be done only
over these background pixels. However, this is not a great advantage. In Fig. 20-(a)
the distribution of the local second order moment is depicted, both for the whole
noisy image and for the background of the image. Both distributions have almost
the same shape, and, what is more important, their maxima are located at the same
point. Very similar is the behavior of the local mean as shown in Fig. 20-(b).

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Fig. 20 (a) Distribution of the local second order moment (using 7 × 7 windows) of the image
without noise (solid) and with rice noise (σn = 10): Background pixels isolated (dash-dotted) and
whole image (dashed). (b) Distribution of the local mean of the noisy image with σn = 10 using
7× 7 windows: Background pixels isolated (dash-dotted) and whole image (dashed).
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(a) (b)

Fig. 21 Background masks used in the experiments.

In order to understand the influence of a proper background segmentation over
the noise estimation a new experiment has been done. Local moments are calculated
using 7 × 7 windows. For the noisy image σn = 10, and 50 simulations have been
done. First we have used the mask in Fig. 21-(a) to segment the background pixels.
This mask totally separates the background from the signal, and it has been manually
built form the original image. The second mask is in Fig. 21-(b). It has been built
from noisy data using automatic thresholding. Some of the tissue has been assigned
to background. This is a common error in automatic segmentation. We will compare
four different estimators:

1. The classical unbiased estimator for σ2
n of eq. (6).

2. The classical unbiased estimator for σn of eq. (8).
3. The new σ2

n estimator of eq. (17), based on second order moment distribution.
4. The new σn estimator of eq. (18), based on local mean distribution.

Results are in Fig. 22-(a) for the first mask and in Fig. 22-(b) for the second one.
When the background pixels are perfectly identified, the performance of the es-

timators is quite similar. All the estimations are around σ̂n = 10. So, in this case,
the new methods do not present any advantage over the classical ones. But in the
second experiment, when some of the pixels of the brain are wrongly assigned to
the background, the classical methods do not estimate properly, but the new ones
do.

The noise estimation method based on the mode of the histogram proposed in
[83] is also robust when a wrong segmentation of the background is done. How-
ever, as it is shown in Fig. 23 the estimator has a larger variance than the methods
proposed in this paper.

5.3 Filtering MRI

To further verify the hypotheses proposed in the previous sections, and to have a
visual idea of the behavior of the filter and noise estimators, a new experiment is
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Fig. 22 Estimation of σn. (a) First background mask has been used: The new σ2
n estimator of

eq. (17) based on the local second order moment (solid), new σn estimator of eq. (17) based on
the local mean (dashed), classical unbiased estimator of eq. (6) for σ2

n (dash-dotted) and classical
unbiased estimator of eq. (8) for σn (dotted). (a) Using first Background mask. (b)Using second
background mask.
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Fig. 23 Estimation of σn using the second background mask. Method based on the mode of the
histogram (solid), new σ2

n estimator of eq. (17) based on the local second order moment (dashed)
and new σn estimator of eq. (17) based on the local mean (dash-dotted).

carried out based on real data. A coronal slice from a 3D MRI volume3 has been
selected.

This original image, see Fig. 24-(a), exhibits noise. The image is filtered using
the LMMSE filter and for the noise estimation the mode of the sample mean is
used (eq. (18)). Result is shown in Fig. 24-(f). Some other noise-removal techniques
have been used to compare with: EM estimation, the method proposed by Koay and

3 Scanned in a 1.5 Tesla GE Echospeed system. Scanning Sequence: Maximum gradient ampli-
tudes: 40 mT/M. Six images with 4 high (750 s/mm2), and two with low (5 s/mm2) diffusion
weighting. Rectangular FOV (field of view) 220 x 165 mm. 128 x 96 scan matrix (256 x 192 image
matrix). 4 mm slice thickness, 1 mm interslice distance. Receiver bandwidth 6kHz. TE (echo time)
70 ms; TR (repetition time) 80 ms (effective TR 2500 ms). Scan time 60 seconds/slice.
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(a) Original (b) EM (c) Koay

(d) Wavelet (e) Wiener (f) LMMSE

(g) RLMMSE (8 steps) (h) RLMMSE (100
steps)

Fig. 24 Coronal slice from a 3D acquisition. (a) Original image. (b) EM method. (c) Koay’s
method. (d) Wavelet domain filter. (e) 2D Wiener filter. (f) LMMSE estimator, adaptive noise
estimation using the local mean and a 5× 5 window. (g) RLMMSE estimator, adaptive noise esti-
mation using the local mean and a 5 × 5 window (8 iterations). (h) RLMMSE estimator, adaptive
noise estimation using the local mean and a 5× 5 window (100 iterations).

Basser, the wavelet domain filter and the Wiener filter, as the latter showed a good
performance in the former experiments. In all the cases adaptive noise estimation
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Use Estimator Local Statistics Background Eq.
MRI σ̂2

n = 1
2

mode(µ̂2i,j) µ̂2i,j = 1
|ηi,j |−1

∑
p∈ηi,j

I2p Needed (17)

MRI σ̂n =
√

2
π

mode(µ̂1i,j) µ̂1i,j = 1
|ηi,j |

∑
p∈ηi,j

Ip Needed (18)

MRI σ̂2
n = 2

4−πmode(σ̂2
I i,j

) σ̂2
I i,j

= 1
|ηi,j |−1

∑
p∈ηi,j

(
Ip − µ̂1i,j

)2 Needed (24)

Any image σ̂2
n = mode(σ̂2

I i,j
) σ̂2

I i,j
= 1
|ηi,j |−1

∑
p∈ηi,j

(
Ip − µ̂1i,j

)2 Not needed (31)

Table 2 The different estimators of σ2
n and σn for Rician Noise proposed in the paper.

is performed using eq. (18) with a 5 × 5 window. Results are given in Fig. 24. We
have also considered once more the possibility of making the filter recursive. Results
in Fig. 24-(g) (8 iterations) shows the good behavior of this technique. Even after
100 iterations, Fig. 24-(h), due to a good noise estimation, the filter is not blurring
the edges. Again, as expected, the visual results are much better for the LMMSE-
based schemes, as well as the wavelet based filter, though the latter still presents a
slightly noisy pattern inside the tissues. The behavior shown for the other schemes is
consistent with the synthetic experiments: noise is attenuated at the cost of blurring
the image.

6 Conclusions

A new filtering method based on the LMMSE estimator for Rician distributed im-
ages has been introduced, together with several noise estimation methods for that
model. The filtering method has proved to be suitable for restoration in this kind of
images, as it keeps the structure of the original image unaltered while suppresses
most of the noise. Its performance is directly related with the goodness of the noise
estimation method employed. If a good dynamic estimator is chosen, the filter may
also be used recursively, showing a very good performance in noise cleaning. In
addition, unlike other existing schemes also based on Rician models, the fact that a
closed-form expression for the LMMSE method has been derived makes the filter-
ing process computationally far more efficient and easier to implement.

We have also presented four different noise estimation methods, all of them based
on the mode of some local statistic. A survey of these methods is on table 2. The
use of the mode of the sample distribution of some local statistics (second order
moment, mean and variance) makes the estimator less dependent of parameters such
as the size of the estimation window, the uniformity of the background, and outliers.

The experiments done with synthetic and real images show that the combination
of the LMMSE filter with the noise estimation techniques here proposed may be a
very useful tool for future MRI restoration.



108 Aja-Fernández et al.

7 Apendices

7.1 About eq. (20)

Parameter b is defined b = σ2

N [(2N − 1)!!]
1/N , where n!! = n(n− 2)!!, for n ≥ 2.

We can write [124]

[(2N − 1)!!]1/N =

[
2NΓ

(
N + 1

2

)
√
π

]1/N

=

[
21−NΓ (2N)

Γ (N)

]1/N

and using the Stirling’s approximation [124]

Γ (z) ≈ e−zzz−1/2(2π)1/2

[
1 +

1

12z
+

1

288z2
+ · · ·

]

for z →∞ and | arg z| < π we obtain

[(2N − 1)!!]1/N ≈
[

21−N e
−2N (2N)2N−1/2(2π)1/2

[
1 + 1

24N + · · ·
]

e−N (N)N−1/2(2π)1/2
[
1 + 1

12N + · · ·
]
]1/N

And as N >> we can approximate [(2N − 1)!!]1/N ≈ 2N
e and b ≈ σ2 2

e . In Fig. 25
the function [(2N − 1)!!]1/N is depicted together with its approximation 2N/e for
N ∈ [1, 100].
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Fig. 25 (a) Function [(2N − 1)!!]1/N (solid) and its approximation with function 2N/e (dashed).
(b) Error=[(2N − 1)!!]1/N − 2N/e
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7.2 Local variance distribution in non-textured images

Fig. 26 Images to be analyzed. MRI from Brainweb [53]. Radiography from Hospital Rı́o Carrión,
Palencia (Spain). Aerial picture from GOES Project Science (goes.gsfc.nasa.gov).

One of the noise estimators proposed is based on the assumption that the dis-
tribution of the local variances in a non-noisy image follows a distribution whose
maximum is set on zero. To evaluate this assumption, the histogram of local vari-
ances of different kind of images has been evaluated. The images are shown in
Fig. 26. Medical, meteorological and natural images have been used. The sampling
local variance is calculated using 5× 5 windows. The results are shown in Fig. 27.
Finally, the mean of the distribution of 29 images from LIVE database [128] is pre-
sented in Fig. 28. Two cases have been considered: firstly, gray scale images and
secondly RGB images where each color component have been evaluated separately.

7.3 PDF of the Sample Local Variance for Rayleigh Random
Variables

LetRi(σ2), i = {1, · · · , N} be a set of random variables with Rayleigh distribution.
The (biased) sample variance is defined as

V̂ar(Ri) =
1

N

N∑

i=1

(Ri)
2 −

(
1

N

N∑

i=1

Ri

)2
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Fig. 27 Normalized distribution of local variances of the images in Fig. 26, displayed in the same
order. A 5× 5 window has been used.

We can define

S1 =
1

N

N∑

i=1

R2
i (σ

2) ∼ χ2N

(
σ2

N

)

being χ2N a Chi-Square distribution, and
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Fig. 28 Mean of the normalized distribution of local variances of the images from LIVE
database [128]. A 5× 5 window has been used. Gray scale images (left) and RGB images (right).
Each color component have been evaluated separately.

S2 =
1

N

N∑

i=1

Ri(σ
2)

The sample variance can be defined as

V = V̂ar(Ri) = S1 − (S2)
2

The PDF of S2 can be approximated [123] by

pS2(x) =
x2N−1NNe−x

2N/2b

2N−1bNΓ (N)

According to the fundamental theorem [122] the PDF of (S2)2 is

p(S2)2(x) =
xN−1NNe−xN/2b

2NbNΓ (N)

(S2)
2 ∼ χ2N

(
b

N

)

We can approximate (see appendix 7.1) b ≈ σ2 2
e , so

(S2)
2 ∼ χ2N

(
σ2

N

2

e

)

The distribution of the sample variance is then the distribution of the difference
of two Chi-Square random variables. According to [45] this distribution, for x ≥ 0
and the same (even) number of degrees of freedom is
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pX(x) =
1

2σ2
1

e
− x

2σ21
1

(N − 1)!

(
σ2

1

σ2
1 + σ2

2

)N N−1∑

k=0

(2N − 2− k)!

k!(N − 1− k)!

×
(

σ2
2

σ2
1 + σ2

2

)N−1−k (
x

2σ2
1

)k

Making σ2
1 = σ2

N , σ2
2 = σ2

N
2
e we can write

pV (x) = CV e
− xN

2σ2

N−1∑

k=0

(2N − 2− k)!

k!(N − 1− k)!

[(
1 +

e

2

) xN
2σ2

]k

being

CV =
N

2σ2

1

(N − 1)!

(2/e)N−1

(1 + 2/e)2N−1

7.4 Difference of Non-central Chi-Square Random Variables

Let X1 and X2 be two random variables with Non-central Chi-square distributions,
such as

X1 ∼ χ2
K1

(xα1;λ1) X2 ∼ χ2
K2

(xα2;λ2)

with PDFs

pi(x) = fi(xαi;Ki, λi) =
e−

xαi+λi
2

2

(
xα1

λi

)Ki−2

4

IKi
2 −2

(√
xαiλi

)
u(x) (32)

being In(z) the modified Bessel function of the first kind, which can be rewritten
using ascending series [124] as

In(z) =

∞∑

k=0

(
1
2z
)n+2k

k!Γ (n+ k + 1)

Eq. (32) can be accordingly rewritten as

pi(x) = e−
xαi+λi

2

∞∑

m=0

(
1

2

)Ki
2 +2m

(xα1)
Ki−2

2 +2mλm1
m!Γ

(
Ki
2 +m

) u(x)

Let us define the variable V as V = X1 −X2. For x ≥ 0 we can write

pV (x) =

∫ ∞

0

p1(x+ y)p2(y)dy
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If using Newton’s generalized binomial theorem, the final PDF can be written as

pV (x) = e−
xα1+λ1+λ2

2

∞∑

m=0

∞∑

n=0

∞∑

p=0

(
1

2

)n+m+p+1

λm1 λ
n
2

(K1

2 − 1 +m

p

)

α
K1/2−1+m
1 α

K2/2−1+n
2

(α1 + α2)
K1+K2

2 −1+m+n−p

Γ
(
K1+K2

2 − 1 +m+ n− p
)

m!n!Γ
(
K1

2 +m
)
Γ
(
K2

2 + n
)xp (33)

7.5 Sample variance in Rician distributed data

Let Ri, i = {1, · · · , N} be a set of random variables with Rician distribution and

S1 =
1

N

N∑

i=1

R2
i S2 =

1

N

N∑

i=1

Ri

The sample variance can be defined as V = S1 − (S2)
2 The PDF of S1 is [120]

pS1
(x) = M1x

N−1
2 e−xN/2σ

2

IN−1

(√
xNA

σ2

)

with M1 a constant, and A2 =
∑
iA

2
i . The sum of Rician distribution is, as in the

Rayleigh case, a classical problem in communications. We can use the approxima-
tion in [120]. From here the PDF of (S2)

2 would be

pS2
2
(x) = M2x

N−1
2 e−xN/2c

2
2IN−1

(√
xNb

c1c2

)

with M2 a constant, and c1, c2 and b parameters related with N and the Signal to
Noise ratio. Both PDF may be expressed as Non-central Chi-Square distributions:

S1 ∼ χ2
2N

(
xN

σ2
,
A2

σ2

)
S2

2 ∼ χ2
2N

(
xN

c22
,
b2

c21

)

The subtraction of two Non-central Chi-Square random variables has been studied
in appendix 7.4. Accordingly, the PDF of the sample variance will be like the one
in eq. (33). However, this long equation may have some problems when trying to
numerically determine its maximum, specially when the argument of the Modified
Bessel function is not small.

Experimentally, a good approximation has been obtained, without any depen-
dence on the parameters c1, c2, A and b.
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p(t) ≈ CT e−t
2N−1

4∑

m=0

( 2N−1
4

m

)
tm(1 +N)mΓ (2N − 1/2−m) (34)

with t = xN
2σ2
n

.
To show the behavior of the approximation, some data has been generated fol-

lowing a Rician model. A constant image with value 20 has been corrupted with
Rician noise with σn = 6. The distribution of some local statistics have been calcu-
lated using 3×3, 5×5 and 7×7 square windows. The results are shown in Fig. 29.
In solid line the actual data distribution is depicted, and the theoretical distribution
is in dashed line.
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Fig. 29 Rician distributed data. Theoretical PDF vs. real data distribution. Left: Local Sample vari-
ance. Center: Local second order moment. Right: Square local mean. Solid line: data distribution.
Dashed line: theoretical PDF.
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Noise estimation in single and multiple coil MR
data

Santiago Aja-Fernández, Antonio Tristán-Vega, Carlos Alberola-López∗

Abstract Noise estimation is a challenging task in Magnetic Resonance Imaging
(MRI), with applications in quality assessment, filtering or diffusion tensor estima-
tion. Main noise estimators based on the Rician model are revisited and classified
in this paper, and new useful methods are proposed. Additionally, all the surveyed
estimators are extended to the non–central Chi model, which applies to multiple
coil MRI and some important Parallel Imaging algorithms for accelerated acquisi-
tions. The proposed new noise estimation procedures, based on the distribution of
local moments, show better performance in terms of smaller variance and unbiased
estimation over a wide range of experiments, with the additional advantage of not
needing to explicitly segment the background of the image.

1 Introduction

Noise in the k-space in Magnetic Resonance (MR) data from each coil is assumed to
be a zero-mean uncorrelated Gaussian process with equal variance in both the real
and imaginary parts. As a result, in single coil systems magnitude data in the spatial
domain is modeled using a Rician distribution [44, 5]. In the same way, the compos-
ite signal in coils systems with multiple channels may be modeled as non–central
Chi distributed [27] if no subsampling of the k-space is assumed. The acquisition
rate can be increased with parallel MRI (pMRI) techniques via subsampled acquisi-
tions of the k-space data. In these cases, reconstruction methods have to be used in
order to suppress the aliasing and underlying artifacts created by the subsampling.
Dominant among these are SENSE [32] and GRAPPA [33], reviews of which can be
found in [30, 31]. From a statistical point of view, such a reconstruction will affect

∗ This chapter was previously published as: S. Aja-Fernández, A. Tristán-Vega, C. Alberola-
López, “Noise estimation in single- and multiple-coil magnetic resonance data based on statistical
models”, Magnetic Resonance Imaging, Vol. 27, No. 10, Dec. 2009, pp. 1397-409.
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the stationarity of the noise in the reconstructed data, i.e. the spatial distribution of
the noise across the image [43]. As a result, the variance of noise may vary for differ-
ent image locations. Moreover it may also vary from one coil to another. However,
under the assumption of a nearly homogeneous variance [46], the data may be con-
sidered to follow a general non–central Chi distribution. This distribution reduces to
a Rician if SENSE is used.

Noise in MR data, either from multiple or single coil acquisitions, is known to
affect the visual quality of the MR images and different processing techniques, such
as segmentation, registration or tensor estimation in Diffusion Tensor MRI (DT-
MRI) [6]. Accordingly, the estimated noise power gives a measure of the quality of
the data. This estimation can be used to measure the Signal-to-Noise Ratio (SNR)
and as an input parameter in MR processing algorithms. Many filtering methods
to improve SNR in MRI need an estimated value for σ2

n: as the conventional ap-
proach [4], maximum likelihood based methods [80, 7, 114], expectation maxi-
mization formulations with Rician noise assumptions [98], Linear Minimum Mean
Square Error (LMMSE) based schemes [6, 8, 129, 9] and unbiased non-local mean
schemes [88, 130, 11, 13]. New techniques for DTI tensor estimation [110, 17],
segmentation methods based on the Rician distribution and fiber orientation estima-
tors [55] also depend upon an estimated σ2

n value.
The aims of this paper are (1) to review and classify different approaches to

estimate noise in Rician magnitude MR images; (2) to propose new methods to
estimate noise in magnitude images; (3) to extend the Rician-based estimators to the
non-central Chi model; and (4) to propose a method to estimate noise in complex
MR images, if they are available. The advantage of this last estimation is that no
background assumption is needed. A survey of all the methods may be found in
Table 2. The methods are tested and compared using synthetic and real data.

2 Theory

2.1 Statistical noise model in single and multiple coil MR signal

For a single–coil acquisition the complex spatial MR data is typically modeled as a
complex Gaussian process

C(x) = A(x) + n(σ2
n), (1)

with C(x) the complex spatial signal, A(x) the original signal if no noise is present
and n(σ2

n) = nr(x;σ2
n) + jni(x;σ2

n) complex uncorrelated Gaussian noise with
zero mean and variance σ2

n. The magnitude signal M(x) is the Rician distributed
envelope of the complex signal [5]

M(x) =
√
|A(x) + n(σ2

n)|2, (2)



Noise estimation in single and multiple coil MR data 119

E{X} Expectation of random variable X
σ2
X Variance of random variable X
〈M(x)〉 (Global) Sample mean of image M(x)

〈M(x)〉 = 1
|Ω|

∑
x∈Ω

M(x)

〈M(x)〉x Local sample local mean of image M(x)
〈M(x)〉x = 1

|η(x)|
∑

p∈η(x)

M(p)

(η(x) a neighborhood centered in x)
Var(M(x))x Sample local variance of M(x)

Var(M(x))x = 〈M2(x)〉x − 〈M(x)〉2x
M(xB) Background area of image M(x)

xB = x|A(x) = 0
M(xR) M(x) in the region R

xR ∈ R
mode{I(x)} Mode of the distribution of I(x)

mode{I(x)} = arg maxx{pI(x)}
â Estimator of parameter a

Table 1 Notation

with probability density function (PDF) [44]:

pM (M |A, σn) =
M

σ2
n

e
−M

2+A2

2σ2n I0

(
AM

σ2
n

)
u(M), (3)

with I0(.) the 0th order modified Bessel function of the first kind, u(.) the Heaviside
step function. In the image background, where the SNR is zero due to the lack of
water-proton density in the air, the Rician PDF simplifies to a Rayleigh distribution
with PDF

pM (M |σn) =
M

σ2
n

e
− M2

2σ2n u(M). (4)

In a multiple–coil MR acquisition system the acquired signal in each signal may
be modeled in the complex spatial domain as the original signal corrupted with
complex additive Gaussian noise, with zero mean and equal variance. Thus, the
complex signal in coil l (for l = 1, 2, . . . , L) can be expressed as

Cl(x) = Al(x) + nl(σ
2
n), (5)

with nl(σ2
n) = nlr (x;σ2

n) + jnli(x;σ2
n) complex Gaussian noise with zero mean

and variance σ2
n and Al(x) the original signal in coil l if no noise is present. If

no subsampling is done in the k-space, the composite magnitude image may be
obtained using methods such as the sum-of-squares (SoS) [27, 38, 48]:
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ML(x) =

√√√√
L∑

l=1

|Cl(x)|2, (6)

Defining AL(x) =
√∑L

l=1 |Al(x)|2, and assuming the noise components to be
identically and independently distributed, the envelope of the magnitude signal ML

will follow a non–central Chi distribution with PDF [27]:

pML
(ML|AL, σn, L) =

A1−L
L

σ2
n

ML
L e
−M

2
L+A2

L
2σ2n IL−1

(
ALML

σ2
n

)
u(ML), (7)

which reduces to the Rician distribution [5] for L = 1. In the background, this PDF
simplifies to a central Chi distribution with PDF:

pML
(ML|σn, L) =

21−L

Γ (L)

M2L−1
L

σ2L
n

e
−M

2
L

2σ2n u(ML), (8)

which reduces to Rayleigh for L = 1.
This statistical model is the usual one for the magnitude signal in phased array

coils and parallel imaging assuming that no subsampling is done in the k-space,
and the image is reconstructed using the SoS method. However, one of the aims of
parallel imaging is precisely to accelerate the acquisition process by sub–sampling
k-space data in each coil. From a statistical point of view, such a reconstruction will
affect the stationarity of the noise in the reconstructed data, i.e. the spatial distribu-
tion of the noise across the image [43]. Noise distributions in SENSE and GRAPPA
are known to vary across pixels. As a result the statistics of the composite magnitude
signal are not strictly stationary. In addition, when reconstructed with GRAPPA σ2

n

may also vary from coil to coil and then, eq. (7) does not exactly hold, since it as-
sumes that σ2

n is the same for every coil. In practical situations, if the variance of
noise is homogeneous enough across pixels and coils, data are usually considered to
follow a non-central Chi distribution if reconstructed with GRAPPA and SoS [46].

2.2 Noise estimation in the Complex Domain

Noise estimation in MR is usually done over the (composite) magnitude image,
since it is the usual output of the scanning process. However, if data in the com-
plex spatial domain are available, the estimation may be easier done in that domain.
As stated before, reconstructed data in each coil Cl(x), both for single or multi-
ple acquisition, are corrupted with Gaussian noise with zero mean and variance σn
in the real and imaginary parts. Noise estimation is carried out assuming that the
noise is uncorrelated and with identical variance in each pixel and it will be reduced
to the estimation of the variance in a well-known Gaussian problem over one of
the components. Many solutions have been proposed, such as methods based on
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wavelets [131, 132], singular-value-decomposition [133] or fuzzy logic [134]. Al-
ternatively, fast and simple solutions based on blockwise operations have also been
reported [125, 135]. In [108] a fast and accurate method is presented (see Table 1
for notation)

σ̂2
n = mode{Var(Clj (x))x}, (9)

with Clj (x) either the real or the imaginary component of the complex data Cl(x)
in lth coil. Although the estimation benefits from the existence of a uniform back-
ground, it is not necessary to have one. The only requirement for the image is not to
be a texture [108], which is the case for MR. So, this estimator will always be valid
and accurate in the MR case. Note that although the estimator is defined over the
complex spatial domain, it could also be defined over the k-space data, where the
Gaussian model also holds.

If no complex data are available, noise estimation is carried out over the compos-
ite magnitude image, assuming again that the noise is uncorrelated and with iden-
tical variance in each pixel. Methods performing such estimation from magnitude
data may roughly be divided into two groups: (i) approaches estimating the noise
variance using a single magnitude image and (ii) approaches using multiple images.
In this paper we will focus on the former. Noise estimation using a single image
is usually based on background intensities, where the true signal amplitude should
vanish and the Rayleigh or central Chi assumptions hold. Some of these techniques
require a previous background segmentation.

2.3 Noise estimation assuming Rician and Rayleigh distributions

The main noise estimators assuming Rician distributed MRI are (see Table 1 for
notation):

1. Estimators that need prior segmentation of the background area: based on the
mean and the second order moment of Rayleigh data [86, 81]:

σ̂2
n =

1

2
〈M2(xB)〉 (10)

σ̂n =

√
2

π
〈M(xB)〉. (11)

where M(xB) is the (segmented) background of image M(x). Eq. (10) is the
Maximum Likelihood estimator for the Rayleigh distribution [7]. Note that both
estimators use all –and only– the pixels in the background to perform the estima-
tion. Accordingly, a previous segmentation of such an area is needed.

2. Estimators based on the background that do not need prior segmentation. These
estimators assume a Rayleigh PDF in the background of the image. The estima-
tion is done without segmentation, by taking the maximum value of some local
distribution. Different approaches are proposed:
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a. Using the mode of some parameter related to σn, as the maximum of the
histogram of the image [37, 136, 83],

σ̂n = mode{M(x)}. (12)

or sample local moments of the image [8]

σ̂2
n =

1

2
mode{〈M2(x)〉x} (13)

σ̂n =

√
2

π
mode{〈M(x)〉x} (14)

σ̂2
n =

2

4− πmode{Var(M(x))x} (15)

where 〈M(x)〉x is the sample local mean of image M(x), as opposed to
〈M(x)〉 which is the global sample mean. Taking the square root will reduce
the dynamic range of the second order moment. From [8] it is easy to derive
that the unbiased estimator will be:

σ̂n =

√
N

2N − 1
mode

{√
〈M2(x)〉x

}
(16)

with N the number of points used for the sample moment estimation, i.e N =
|η(x)|. In [8] estimators based on local moments were proven to be more
robust than those based on the image histogram, mainly due to the fact that
the distributions of this moments are much less spread giving a better mode
estimation.

b. Methods that fit a Rayleigh-related distribution to the histogram of the data.
Brummer et al. in [37] uses a least squares fitting of the Rayleigh distribution
with the histogram of the data in the background

σ̂n = arg min
σ,K

lc∑

l=l0

(
hM (l)−K l

σ2
e−

l2

2σ2

)2

(17)

where hM is the (partial) histogram of the data, l0 and lc are the lower and
upper bounds of the histogram andK is an amplitude factor. The upper bound
is usually set to lc = 2σn to cut off the influence of the Rician data. An initial
estimate of this parameter is needed. Chang in [137] makes the fit using a
Gaussian smoothing of the histogram of the image:

σ̂n = arg max
σ

1

ns

n∑

i=0

1√
2π
e−

1
2 (σ−xis )

2

(18)

with n the sample size, s = 1.06σ0n
1/5 the smoothing width and σ0 the

standard deviation of the smoothing kernel.
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Using the distributions for the sample moments derived in [8], it is possible
to use the least squares fitting over the histograms of the sample moments
instead of using the histogram of the image. Accordingly, the following new
estimators are proposed (for details see Appendix 6.1)

σ̂n = arg min
σ,K

lc∑

l=l0

(
h<M2>(l)−K lN−1NN

(2σ2)NΓ (N)
e−

lN
2σ2

)2

(19)

σ̂n = arg min
σ,K

lc∑

l=l0

(
h<M>(l)−K l2N−1NN

2N−1bNΓ (N)
e−

l2N
2b

)2

(20)

σ̂n = arg min
σ,K

lc∑

l=l0

(
h√<M2>(l)−K l2N−1NN

2N−1σ2NΓ (N)
e−

l2N
2σ2

)2

, (21)

where h<M2>, h<M> and h√<M2> are the histograms of the sample sec-
ond order moment, the sample mean, and the square root of the second order
moment, respectively. All the moments are local and computed in a neighbor-
hood. N is the number of points used for the local sample moment estimation
and b ≈ σ2 π

4 .
c. Maximum likelihood estimation. Using the joint PDF of the histogram of

Rayleigh data, [84] proposes a maximum likelihood (ML) estimation of σn

σ̂n = arg min
σ

[
Nk log

(
e−

l20
2σ2 − e−

l2k
2σ2

)
−

k∑

i=1

ni log

(
e−

l2i−1

2σ2 − e−
l2i

2σ2

)]

(22)
with li i = 0, · · · ,K the boundaries of the histogram bins, ni the number
of observations in bin [li−1, li] and Nk =

∑k
i=1 ni. A method to select the

number of bins is also provided.
If the ML estimation is done over the second order moment of the Rayleigh
data, a new estimator may be defined (see Appendix 6.1 for details)

σ̂n = arg min
σ

[
Nk log

(
Γ

(
N + 1, l0

N

2σ2

)
− Γ

(
N + 1, lk

N

2σ2

))

−
k∑

i=1

ni log

(
Γ

(
N + 1, li−1

N

2σ2

)
− Γ

(
N + 1, li

N

2σ2

))]
.(23)

Note that the histogram now considered is the second order moment. For a
more compact dynamic range, the square root of this moment may be used
instead:
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σ̂n = arg min
σ

[
Nk log

(
Γ

(
N,

l20N

2σ2

)
− Γ

(
N,

l2kN

2σ2

))

−
k∑

i=1

ni log

(
Γ

(
N,

l2i−1N

2σ2

)
− Γ

(
N,

l2iN

2σ2

))]
. (24)

3. Estimator based on Rician data. Assuming that all the data are Rician distributed
and no Rayleigh background is present, and the SNR is high enough (A/σn > 5),
the following estimator may be defined [8]

σ̂2
n = mode{Var(M(x))x}. (25)

Note that it is similar to the estimation of the variance of Gaussian additive noise
[108]. If the image has Rayleigh background, a selection inside the tissue area
with no background, say R, must be considered. This region must be roughly
defined using a thresholding method, such as the ones proposed in [138, 139].
The estimator may be redefined as

σ̂2
n = mode{Var(M(xR))x}, xR ∈ R (26)

where M(xR) are image values inside the region R. Since this method is based
on an approach of the sample variance, the estimation is less accurate than the
Rayleigh-based methods. Thus, it is advised only to be used when no Rayleigh
areas are available.

A survey of the methods together with the labels that will be used in the experi-
ments may be found in Table 2.

The different noise estimators presented in this section have different perfor-
mance under different environments. Estimators Bk-M2 and Bk-M1, eqs. (10)-(11),
have smaller variances because more points are used in the estimation; they also
have the added advantage of avoiding the calculation of the mode or any optimiza-
tion process. However, they also present some drawbacks. First, the background
must be segmented, usually with manual human intervention, making the method
difficult to integrate in automatic procedures. What is more, if the segmentation
is automatically done, and some error is committed, these two estimators may be
highly biased, as reported in [8]. The estimation also assumes that the original back-
ground is homogeneous, and signal-free. This assumption makes the estimate sen-
sitive to errors and ghosting artifacts.

Estimators that do not need prior segmentation of the background are more ro-
bust to errors, artifacts and small traces of signal in the background [8, 84]. Due
to these sources of error, it is advisable to use estimators in eqs. (12)-(24) even
when an automatic segmentation of the background is feasible. A robust estimation
method would involve a rough automatic segmentation of the Rayleigh area –using
for instance some thresholding method, as the ones proposed in [138, 139]– and a
subsequent estimation using one of eqs. (12)-(24) over the thresholded data.
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To finish, we would like to stress the importance of the Rician-based estimator in
eq. (25)-(26) when dealing with MR data without background. Note that MRI is not
only devoted to brain imaging; in other areas only tissue is scanned, and therefore
no estimator based on background assumptions can be used.

2.4 Noise estimation assuming non–central Chi distributions

Many methods have been proposed for noise estimation in MR data assuming a Ri-
cian distribution. In this section the main ones will be extended to the non–central
Chi model. Note that this model is suitable for multiple coil imaging without sub-
sampling and it can be also extended to GRAPPA reconstructed pMRI.

Two different noise measures will be estimated: σ2
n, i.e. the noise variance in each

coil and σ2
nL = Lσ2

n, with L the number of coils. Noise estimators for this model
may be defined as (see Table 1 for notation, see Appendix 6.2 for the moments of
Chi distribution and see Appendix 6.1 for derivation):

1. Estimators that need prior segmentation of the background area [27, 46]:

σ̂2
nL =

1

2
〈M2

L(xB)〉 (27)

σ̂nL =
1√
2
〈ML(xB)〉

√
LΓ (L)

Γ
(
L+ 1

2

) (28)

Estimator in eq. (27) is the Maximum Likelihood estimator for the Central Chi
distribution.

2. Estimators based on the background that do not need prior segmentation. These
estimators assume a central Chi PDF in the background of the image.

a. Using the mode of some local parameter related to σn, as the maximum of the
histogram of the image

σ̂n =
1√

2L− 1
mode{ML(x)}. (29)

Using the sample local moments of the image:

σ̂2
nL =

1

2
mode{〈M2

L(x)〉x} (30)

σ̂nL =
1√
2

mode{〈ML(x)〉x}
√
LΓ (L)

Γ
(
L+ 1

2

) (31)

σ̂2
n =

(
2L− 2Γ 2

(
L+ 1

2

)

Γ 2(L)

)−1

mode{Var(ML(x))x} (32)
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b. Methods that fit a central Chi-related distribution to the histogram of the data.
First using least squares we fit a central-Chi distribution with the histogram of
the data in the background

σ̂n = arg min
σ,K

mc∑

m=m0

(
hM (m)−K 21−L

Γ (L)

m2L−1

σ2L
e−

m2

2σ2

)2

(33)

where hM is the (partial) histogram of the data, m0 and mc are the lower and
upper bounds of the histogram andK is an amplitude factor. The upper bound
is set to mc = 2σn to cut off the influence of the non–central Chi data.
Using the distributions for the sample moment, it is possible to use the least
square fitting over the histograms of the second order sample moment instead
of using the histogram of the image. Accordingly, the following new estimator
is proposed (see Appendix 6.1 for details)

σ̂n = arg min
σ,K

mc∑

m=m0

(
h<M2

L>
(l)−K mNL−1NNL

(2σ2)NLΓ (NL)
e−

mN
2σ2

)2

(34)

h<M2
L>

being the histogram of the sample second order moment and N the
number of points used for the sample moment estimation.

c. Maximum likelihood estimation. Using the joint PDF of the histogram of cen-
tral Chi data, a maximum likelihood estimation of σn is proposed (see Ap-
pendix 6.1 for details)

σ̂n = arg min
σ

[
Nk log

(
Γ

(
L,

m2
0

2σ2

)
− Γ

(
L,

m2
c

2σ2

))

−
K∑

i=1

ni log

(
Γ

(
L,
m2
i−1

2σ2

)
− Γ

(
L,

m2
i

2σ2

))]
(35)

with mi i = 0, · · · ,K the boundaries of the histogram bins, ni the number of
observations in bin [mi−1,mi] and Nk =

∑K
i=1 ni.

If the ML estimation is done over the second order moment of the data, a new
estimator may be defined (see Appendix 6.1 for details)

σ̂n = arg min
σ

[
Nk log

(
Γ

(
NL,m0

N

2σ2

)
− Γ

(
NL,mk

N

2σ2

))

−
K∑

i=1

ni log

(
Γ

(
NL,mi−1

N

2σ2

)
− Γ

(
NL,mi

N

2σ2

))]
(36)

3. Estimator assuming that no background is present. If the data is non–central Chi
distributed and the SNR is high enough, i.e. AL >> σn (see simplification of
the variance in Appendix 6.2):

σ̂2
n = mode{Var(Ml(x))x} (37)
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Note that it is again similar to the estimation of the variance of Gaussian additive
noise [108] and also similar to the estimation of σ2

n for Rician noise under the
same high SNR assumption.

A survey of the methods together with the labels that will used in the experiments
may be found in Table 2.

Noise can also be estimated using other methods, like multiple images or the
method of moments [114] or the methods porposed by Koay et al. [48, 60], but they
will not be considered in this paper.

3 Materials and Methods

Synthetic experiments for noise estimation were carried out using a 2D synthetic
slice from a BrainWeb MR volume [53], see Fig. 1, with intensity values in [0 −
255].The average intensity value for the White Matter is 158, for the Gray Matter is
105, for the cerebrospinal fluid 36 and 0 for the background. The image has been
used for noise estimation out of Rician and non–central Chi data, therefore it has
been corrupted with noise in three different ways, which leads to three different
experiments:

1. Artificially corrupting with uncorrelated Rician noise with σn ranging in [5−30],
which mean SNR values in [5.3 − 31.6] for White Matter and in [2.5 − 21] for
Gray Matter. Estimators based on the Rayleigh background that do not need prior
segmentation have been tested with this method.

2. Simulating a 8-coil system, 8 images have been corrupted with independent
Gaussian noise and the composite image is created using SoS. This way, the re-
sulting image will follow a non–central Chi distribution. Different values of σnL
ranging in [5 − 30] are considered. Estimators based on the central Chi back-
ground that do not need prior segmentation have been tested with this method.

3. Due to interpolation of the data in the scanner, the initial assumption of uncor-
related noise does not usually hold in real MR data. Although the Rician and
Rayleigh assumptions are still valid for single coil data –note that the averaging
of N Gaussians with zero mean and variance σ2 is another Gaussian with zero
mean and variance σ2/N ,– estimators based on moments may fail. To test the es-
timators we generate correlated noise processes using a 3× 3 averaging window
prior to adding them to the complex MR data and to generating the magnitude
image. Again, σn range in [5−30], and the estimators used in the first experiment
are tested again.

In all the experiments, for every σn value, the mean and the variance of 1000
experiments for each estimation method are considered. The whole estimation is
done over the final magnitude image. The local moments have been calculated using
7 × 7 neighborhoods, and histograms have been calculated over 1000 bins for all
cases. For the sake of comparison, no optimization in the election of the bins has
been used in any method.
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Assump. Method Refs. Label

1 Rayleigh σ̂2
n = 1

2
〈M2(xB)〉 [86, 81] Bk M2

Rayleigh σ̂n =
√

2
π
〈M(xB)〉 [81] Bk M1

2-a Rayleigh σ̂n = mode{M(x)} [37, 83] Max H
Rayleigh σ̂2

n = 1
2

mode{〈M2(x)〉x} [8] Mode M2

Rayleigh σ̂n =
√

N
2N−1

mode
{√
〈M2(x)〉x

}
New Mode M2(sq)

Rayleigh σ̂n =
√

2
π

mode{〈M(x)〉x} [8] Mode M1

Rayleigh σ̂2
n = 2

4−πmode{Var(M(x))x} [8] Mode V1

2-b Rayleigh σ̂n = argmin
σ,K

lc∑
l=l0

(
hM (l)−K l

σ2 e
− l2

2σ2

)2

[37] Brummer

Rayleigh σ̂n = argmax
σ

1
nh

n∑
i=0

1√
2π
e
− 1

2

(
σ−xi
h

)2

[137] Chang

Rayleigh σ̂n = argmin
σ,K

lc∑
l=l0

(
h<M2>(l)−K lN−1NN

(2σ2)NΓ (N)
e
− lN

2σ2

)2
New LS-M2

Rayleigh σ̂n = argmin
σ,K

lc∑
l=l0

(
h<M>(l)−K l2N−1NN

2N−1bNΓ (N)
e−

l2N
2b

)2

New LS-M1

Rayleigh σ̂n = argmin
σ,K

lc∑
l=l0

(
h√

<M2>
(l)−K l2N−1NN

2N−1σ2NΓ (N)
e
− l

2N
2σ2

)2

New LS-M2 (sq)

2-c Rayleigh σ̂n = argmin
σ

[
Nk log

(
e
− l20

2σ2 − e−
l2k
2σ2

)
[84] Sijbers

−
k∑
i=1

ni log

(
e
−
l2i−1

2σ2 − e−
l2i

2σ2

)]
Rayleigh σ̂n = argmin

σ

[
Nk log

(
Γ
(
N + 1, l0

N
2σ2

)
− Γ

(
N + 1, lk

N
2σ2

))
New ML-M2

−
k∑
i=1

ni log
(
Γ
(
N + 1, li−1

N
2σ2

)
− Γ

(
N + 1, li

N
2σ2

))]
Rayleigh σ̂n = argmin

σ

[
Nk log

(
Γ
(
N,

l20N

2σ2

)
− Γ

(
N,

l2kN

2σ2

))
New ML-M2(sq)

−
k∑
i=1

ni log

(
Γ

(
N,

l2i−1N

2σ2

)
− Γ

(
N,

l2iN

2σ2

))]
3 Rician σ̂2

n = mode{Var(M(x))x} [8] Mode Vr
4 central χ σ̂2

nL = 1
2
〈M2

L(xB)〉 [27, 46] Bk M2–χ

central χ σ̂nL = 1√
2
〈ML(xB)〉

√
LΓ (L)

Γ(L+ 1
2 )

[46] Bk M1–χ

5-a central χ σ̂n = 1√
2L−1

mode{ML(x)} New Max H–χ

central χ σ̂2
nL = 1

2
mode{〈M2

L(x)〉x} New Mode M2–χ

central χ σ̂nL = 1√
2

mode{〈ML(x)〉x}
√
LΓ (L)

Γ(L+ 1
2 )

New Mode M1–χ

central χ σ̂2
n =

(
2L− 2Γ2(L+ 1

2 )
Γ2(L)

)−1

mode{Var(ML(x))x} New Mode V1–χ

5-b central χ σ̂n = argmin
σ,K

mc∑
m=m0

(
hM (m)−K 21−L

Γ (L)
m2L−1

σ2L e
− m2

2σ2

)2

New LS-H–χ

central χ σ̂n = argmin
σ,K

mc∑
m=m0

(
h<M2

L
>(l)−K mNL−1NNL

(2σ2)NLΓ (NL)
e
−mN

2σ2

)2
New LS-M2–χ

5-c central χ σ̂n = argmin
σ

[
Nk log

(
Γ
(
L,

m2
0

2σ2

)
− Γ

(
L,

m2
c

2σ2

))
New ML-H–χ

−
K∑
i=1

ni log

(
Γ

(
L,

m2
i−1

2σ2

)
− Γ

(
L,

m2
i

2σ2

))]
central χ σ̂n = argmin

σ

[
Nk log

(
Γ
(
NL,m0

N
2σ2

)
− Γ

(
NL,mk

N
2σ2

))
New ML-M2–χ

−
K∑
i=1

ni log
(
Γ
(
NL,mi−1

N
2σ2

)
− Γ

(
NL,mi

N
2σ2

))]
6 non-central χ σ̂2

n = mode{Var(Ml(x))x} New Mode Vn
7 Gaussian σ̂2

n = mode{Var(Clj (x))x} [108] Mode Vg

Table 2 Survey of noise estimators for single and multiple coil MR data. Note that estimators in
boxes 1 and 4 require background segmentation.
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For estimation over real data, two different data sets have been considered. First,
one slice of the baseline from a single coil DTI acquisition, scanned in a 1.5 Tesla
GE system, slick thickness: 5 mm (real data set 1, RD1); and second a multiple coil
acquisition, from an 8 coil GE Signa 1.5 Tesla EXCITE 11m4 scanner, FSE Pulse
Sequence, TR=500 ms, TE= 13.8 ms, matrix size= 256 × 256, FOV=20 × 20 cm,
slick thickness= 5 mm (real data set 2, RD2).

RD1 will be used to compare estimators that require a background segmentation
with those that do not need it. To that end, the Rayleigh noisy background is auto-
matically segmented. Noise estimation is done using different estimators over the
segmented background and over the whole image.

RD2 will be used to test the estimation assumptions over the complex spatial
domain and over Rician and non-central Chi composite images.

Fig. 1 Synthetic MR image from Brainweb used for the noise estimation experiments. (a) Original
image. (b) Image with uncorrelated Rician noise. (c) Noisy image following a non–central Chi
distribution, simulating a 8–coils system with no subsampling. (d) Image with correlated Rician
noise.

Fig. 2 Real Data set 1 (RD1). Slice from a single coil DTI-MR acquisition. (a) Original image. (b)
Automatic background segmentation mask. (c) Segmented background.
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Fig. 3 Real Data set 2 (RD2). Slice from an 8-coil adquisition.
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Fig. 4 Comparison of different noise estimators for Rician magnitude MR data assuming uncor-
related noise. 1000 experiments are considered for each sigma value. (a) Mean of the estimated
value divided by the actual value. (b) Standard deviation of the experiments. (Standard deviation
for ’Max H’ is out of scale).

4 Results

4.1 Synthetic experiments for noise Estimation

We will focus first on those methods based on the Rayleigh background that do
not need prior segmentation. Results for a wide range of σn values are shown in
Fig. 4 (see Table 2 for reference). In Fig 4-(a), the mean of the 1000 experiments
divided by the actual value of σn is depicted. Accordingly, the closer to 1, the better
the estimation. In Fig 4-(b), the standard deviation of the experiments is shown; the
lower the value, the better the estimation.

From the results it can be seen that although all the methods accurately estimate
the noise –the values are in a small range between 0.99 and 1.06– the ones based
on moments (local mean and local second order moment) have a smaller bias for a
wider range of values. Max-H is the method with the weakest performance, due to
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the difficulty to accurately estimate the mode out of a wide distribution. Methods
based on the mode of moments (Mode-M1, Mode-M2) show very good average
behavior, although its variance is slightly larger than that of other methods, due to
the non linear nature of the mode operator. The proposed new methods (LS-M1,
LS-M2 y ML-M2) show the better performance in terms of unbiased estimation and
lower variance.
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Fig. 5 Comparison of different noise estimators for multiple coil MR data assuming uncorrelated
noise. 1000 experiments are considered for each sigma value, L = 8 coils and no subsampling of
the k-space. (a) Mean of the estimated value divided by the actual value. (b) Standard deviation of
the experiments.

The second synthetic experiment focuses on estimation over a non–central Chi
distributed image, and we will use the estimators based on the the central Chi back-
ground that do not need prior segmentation. Labels for each method can be found
in Table 2. Results are shown in Fig. 5: in Fig 5-(a), the mean of the 1000 experi-
ments divided by the actual value of σnL is depicted and in Fig 5-(b), the standard
deviation of the experiments is shown. The interpretation is the same as the previous
experiment.

From the results it can be seen that although most of the methods accurately
estimate the noise –the values are in a small range between 0.99 and 1.04 for all
methods but ML-H– the ones based on moments have again a smaller bias for a
wider range of values. Max-H and ML-H are the methods with the weakest perfor-
mance. It is probably due, as in the Rician case, to the use of the histogram of the
image. Methods dealing with the histogram of the second order moments show a
more robust behavior.

Results for the third experiment –estimation out of correlated Rician MR data–
are now in Fig. 6. While Brummer’s, Chang’s and Sijbers’ methods do not show
any significant change, the moments-based methods show a small negative bias and
a larger variance, as expected. Despite the worsening variance, LS-M1, LS-M2 and
ML-M2 are still by far the most accurate estimators.

To conclude we must say that from the synthetic experiments, methods showing
the best performance are those based on the second order moment, mainly ML- and
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Fig. 6 Comparison of different noise estimators for MR data with correlated noise. 1000 experi-
ments are considered for each sigma value. Left: mean of the estimated value divided by the actual
value. Right: Standard deviation of the experiments. (See Legend in Fig. 4).

LS–based methods, both for Rician and non–central Chi distributions. However, the
methods based on the mode are the only ones that do not rely on an optimization
method to achieve the final solution. So, although their variance is slightly larger
than other methods, they present a simple and fast alternative for noise estimation
in MR.

4.2 Estimation on real data: the background problem

The behavior of the estimators that require a segmented background is analyzed
using the RD1. The image in Fig. 2 has an artificial zero background that must be
removed before estimation. Noisy background is automatically segmented and the
estimation is done using different estimators over the segmented background and
over the whole image. Results are on Table 3. Labels for each method can be found
in Table 2. The estimated values are compared with each other as there is no ground
truth to refer to.

Since the segmented background is not totally homogeneous –note that part of
the skull has been added to the automatically segmented area,– estimators that re-
quire segmentation (Bk-M2 and Bk-M1) are clearly biased when compared with the
other estimators. Note that the other estimators do not show a great variation when
using only the background of the whole image. ML and LS based estimators are the
ones with less influence from the segmentation.

4.3 Estimation on real data: the complex domain

As a final experiment, the noise estimation will be done over the complex data of
RD2, using the method described in Section 2.2, and compared to the magnitude
estimators. For the magnitude image two different sets are considered:
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Method Segmented Bkg Whole Image
Bk M2 29.59 —
Bk M1 27.55 —
Max H 21.98 22.00
Mode M1 23.85 22.34
Mode M2 22.89 22.90
Mode V1 21.83 21.39
Brummer 23.52 23.55
LS M1 23.64 23.64
LS M2 23.41 23.41
Sijbers 23.59 23.61
ML-M2 23.99 24.01

Table 3 σn estimation using different noise estimation over real single coil MR data.

1. The composite magnitude image, as the SoS of the complex data. One non–
central Chi image is generated.

2. 8 Rician magnitude images, one from each coil.

The advantage of estimating in the complex domain is that no background as-
sumption is needed. Results for σn estimation are on Table 4 (for the Rician the
average of the estimation for each coil is considered). Note that the estimation done
in the complex domain is consistent with the estimation done over the magnitude
image. Estimator Max-H overestimates the level of noise for the non-central Chi
experiment, but the rest of the estimators give a similar value of σn. Then, we can
conclude that the estimation over the complex data is equivalent to the estimation
over the magnitude image. The former will always be more accurate though com-
plex data are not always available.

Data Method σ̂n
Complex Image (Real) Mode Vg 1.41 10−2

Complex Image (Imag) Mode Vg 1.41 10−2

Magnitude (Non–central Chi) Max H 2.02 10−2

Mode M1 1.56 10−2

Mode M2 1.42 10−2

Mode V1 1.41 10−2

Magnitude (Rician) Max H 1.42 10−2

Mode M1 1.41 10−2

Mode M2 1.41 10−2

Mode V1 1.42 10−2

Table 4 Different σn estimation over the real data set 2. Complex data and magnitude are consid-
ered.
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5 Conclusions

Some important topics about noise estimation in MR data have been studied. The
main noise estimation methods out of Rician magnitude MR data are revisited and
classified according to the model they rely on. Some new estimators based on Least
Squares and Maximum Likelihood approaches are proposed. These new methods
show a more robust behavior when compared with the existing ones. All the re-
viewed estimators, together with the new ones, have been extended to the important
case of non–central Chi distributed MR data.

Estimators based on a Rayleigh (or central Chi) background which do not require
its segmentation are more robust to this issue, but may benefit as well of a previous
rough segmentation. Finally, estimators based on Rician (or non–central Chi) data
generally have higher variance, but benefit from not needing a background to be
present in the image, which may be a requisite in some MRI data sets.

In addition, a method to estimate the noise from the data in the spatial complex
domain is also provided. Note that the estimation of noise in the complex domain
may benefit of the great existing knowledge about estimation in Gaussian data in
literature. On the other hand, an estimation based on the mode operator, as the ones
proposed, does not requires any segmentation or background assumption, and it does
not rely on any optimization method to achieve the final solution. Thus, although
the estimation variance for this method may be slightly larger than for others, we
think it is a simple and fast alternative for noise estimation that could be directly
implemented in the scanning software.

6 Appendices

6.1 About the noise estimators

Equations related to the noise estimators are derived. Let Ri(σ2), i = {1, · · · , N}
be a set of random variables with Rayleigh distribution and let Xi(L, σ

2) be a set of
independent and identically distributed (IID) central Chi variables. Then

S1 = 1
N

N∑
i=1

Ri(σ
2) pS1

(x) = x2N−1NN

2N−1bNΓ (N)
e−

x2N
2b u(x)

S2 = 1
N

N∑
i=1

R2
i (σ

2) pS2(x) = xN−1NN

(2σ2)NΓ (N)
e−

xN
2σ2 u(x)

S√2 =

√
1
N

N∑
i=1

R2
i (σ

2) pS√2
(x) = x2N−1NN

2N−1σ2NΓ (N)
e−

x2N
2σ2 u(x)

T2 = 1
N

N∑
i=1

X2
i (L, σ2) pT2(x) = xNL−1

Γ (NL)

(
N

2σ2

)NL
e−

xN
2σ2 u(x)

In [8] estimators derived from the first three distributions are defined. The mode of
the last distribution is
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mode{T2} =
NL− 1

N
2σ2

An estimator may be defined using the second order moment (and assumingNL >>
1) as

σ̂2
n =

1

2L
mode{〈M2

L(x)〉x}.

The joint PDF of the histogram of a distribution p(x; a) is given by [84]

p(ni|a, li) =
Nk!

∏K
i=1 ni!

K∏

i=1

pnii (a)

with pi the probability that an observation falls in the range [li−1, li]:

pi(a) =

∫ li
li−1

p(y; a)d(y)
∑K
i=1

∫ li
li−1

p(y; a)d(y)

For S2 we can define

pi(σ,N) =
Γ
(
N + 1, li−1

N
2σ2

)
− Γ

(
N + 1, li

N
2σ2

)

Γ
(
N + 1, l0

N
2σ2

)
− Γ

(
N + 1, lk

N
2σ2

) (38)

being Γ (n, x) the (upper) incomplete Gamma function Γ (n, x) =
∫∞
x
tn−1e−tdt.

For the second order moment of the central Chi distribution T2

pi(σ,N) =
Γ
(
NL,mi−1

N
2σ2

)
− Γ

(
NL,mi

N
2σ2

)

Γ
(
NL,m0

N
2σ2

)
− Γ

(
NL,mk

N
2σ2

) (39)

If the same reasoning is done over the histogram of the background of the parallel
image the probability is

pi(σ,N) =
Γ
(
L,

m2
i−1

2σ2

)
− Γ

(
L,

m2
i

2σ2

)

Γ
(
L,

m2
0

2σ2

)
− Γ

(
L,

m2
k

2σ2

) . (40)

6.2 Moments of the Central and non–central Chi distributions

For a central Chi distribution the main moments are
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E{ML} = σn
√

2
Γ
(
L+ 1

2

)

Γ (L)
(41)

E{M2
L} = 2σ2

nL (42)

σ2
ML

= σ2
n

(
2L− 2

[
Γ 2
(
L+ 1

2

)

Γ 2(L)

])
(43)

For the non–central Chi distribution the second order moment and the mean are

E{M2
L} = 2σ2

nL+A2
L (44)

E{ML} =
√

2σn
Γ
(
L+ 1

2

)

Γ (L)
1F1

(
−1

2
, L,− A

2
L

2σ2
n

)
(45)

1F1 (a, b, z) being the Confluent Hypergeometric Function of the first kind. If x =
AL
σn

, assuming that x is large (high SNR assumption), and taking into account that

1F1 (b− a, b, z) = ez 1F1 (a, b,−z)

1F1 (a, b, z) =
Γ (b)

Γ (a)
ezza − b

(
1− (a− 1)(a− b)

z
+O

(
1

z2

))

we can make the approximation

E{ML} =
√

2σn
Γ
(
L+ 1

2

)

Γ (L)
e−

x2

2 1F1

(
L+

1

2
, L,

x2

2

)

=
√

2σn
Γ
(
L+ 1

2

)

Γ (L)
e−

x2

2 e
x2

2
Γ (L)

Γ
(
L+ 1

2

) x√
2

(
1 +

L− 1
2

x2
+O

(
1

x4

))

= σnx

(
1 +

L− 1
2

x2
+O

(
1

x4

))

Therefore, the variance for high SNR may be approximated as

σ2
ML

= σ2
n

(
2L+ x2 − x2

(
1 +

L− 1
2

x2
+O

(
1

x4

))2
)

= σ2
n

(
1 +O

(
1

x4

))
(46)
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Effective Noise Estimation and Filtering from
Correlated Multiple-Coil MR data

Santiago Aja-Fernández, Véronique Brion, Antonio Tristán-Vega∗

Abstract Modern MRI protocols based on multiple-coil acquisitions have carried on
a new attention to noise and signal statistical modeling, as long as most of the exist-
ing techniques for data processing are model-based. In particular, non-accelerated
multiple-coil and GRAPPA acquisitions have brought noncentral-χ (nc-χ) statistics
into stake as a suitable substitute for traditional Rician distributions. However, this
model is only valid when the signals received by each coil are roughly uncorre-
lated. The recent literature on this topic suggests this is often not the case, so that
nc-χ statistics are in principle not adequate. Fortunately, such model can be adapted
through the definition of a set of effective parameters, namely an effective noise
power (greater than the actual power of thermal noise in the RF receiver) and an
effective number of coils (smaller than the actual number of RF receiving coils in
the system). The implications of these artifacts in practical algorithms have not been
discussed elsewhere. In the present paper we aim studying their actual impact, and
suggesting practical rules to cope with them. We define the main noise parameters in
this context, introducing a new expression for the effective variance of noise which
is of capital importance for the two image processing problems studied: first, we
propose a new method to estimate the effective variance of noise from the compos-
ite magnitude signal of MR data when correlations are assumed. Second, we adapt
several model-based image denoising techniques to the correlated case, using the
noise estimation techniques proposed. We show, through a number of experiments
with both synthetic, phantom, and in vivo data, that neglecting the correlated nature
of noise in multiple-coil systems implies important errors even in the simplest cases.
At the same time, the proper statistical characterization of noise through effective
parameters drives to improved accuracy (both qualitatively and quantitatively) for
both of the problems studied.

∗ This chapter was previously published as: Santiago Aja-Fernández, Véronique Brion, Antonio
Tristán-Vega, “Effective Noise Estimation and Filtering from Correlated Multiple-Coil MR data”,
Magnetic Resonance Imaging, Volume 31, Issue 2, February 2013, Pages 272285.
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1 Introduction

Noise in MR data is statistically modeled attending to the scanner coil architecture.
For a single–coil acquisition, the complex spatial MR data is typically assumed to
be a complex Gaussian process, where the real and imaginary parts of the original
signal are corrupted with uncorrelated Gaussian noise with zero mean and equal
variance. Thus, the magnitude signal is the Rician distributed envelope of the com-
plex signal [5]. Most of the noise estimation techniques, as well as filtering methods
for MRI relay on this Rician model. However, it does not hold in every case. In
fact, for modern coil architectures, the Rician model is often not valid. A mismatch
between the actual data and the model can affect not only visual inspection but
also processing techniques such as segmentation, registration or tensor estimation
in Diffusion Tensor MRI (DT-MRI) [6, 14].

If multiple–coil MR acquisition systems are considered, noise in each receiving
coil in the k–space can be also modeled as a complex stationary Additive Gaussian
Noise process, with zero mean and equal variance [36]. Assuming the noise compo-
nents to be identically and independently distributed, the k-space fully sampled, and
the composite magnitude signal (CMS) obtained using sum-of-squares (SoS) [27],
the CMS will follow a non-central chi (nc-χ) distribution [27]. The noise variance
will be the same for all image points in both the k–space and x–space domains, i.e.
the noise in the image may be considered spatial-stationary.

The nc-χ distribution is becoming more and more common to model the behav-
ior or signal and noise in multiple-coil systems, see for instance [60, 10] and it is
also commonly used as the model for GRAPPA reconstructed data [43, 46, 42].
However, the CMS will behave as a nc-χ only if all the coils in the scanner have the
same variance of noise, and there is no correlation between them. In practical cases,
correlation between coils exists, and therefore the standard nc-χ model may not be
valid.

In [49] authors showed that if multiple coils and correlated noise are considered,
the data does not strictly follow a nc-χ. However, for practical purposes, it can be
modeled as such, but taking into account two effects:

1. Effective parameters must be considered. This means that, due to the correlation,
the distribution is very similar to a nc-χ but considering a smaller number of coils
and a greater variance of noise.

2. The effective parameters will also depend on the signal, and hence on the position
within the image. As a result, there will be different variance of noise in different
areas of the image. Therefore, the pattern of noise will be spatially variant, and
the noise becomes nonstationary.

Similar conclusions were raised in [42] for GRAPPA-reconstructed data. In the
GRAPPA case, the effect of the noise variance varying for different image locations
is increased due to the reconstruction process.

Due to both effects, methods traditionally used that rely on the nc-χ will only be
valid if they are trimmed to the non-stationarity and effective parameters are used.
Explaining how the adjustment is to be done is the main purpose of this paper. For
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the sake of illustration we will focus on two of the most popular problems dealing
with noise in MR: noise estimation and noise filtering. Many papers can be found
about these topics in the literature along the last 5 years, see for instance [6, 43, 47,
88, 12, 91, 84].

Noise estimation is a particularly interesting topic, since most of the existing
methods are based on the assumption of an homogeneous distribution of noise
across the image, that can easily be measured in the background area. In this new
scenario, we will first study what to estimate and how to do it under the restrictions
posed by the model. Different cases will be studied and guidelines for estimation
will be set. Although some particular estimators are chosen, the results here pre-
sented may be extended to more complex estimators, such as the ones presented in
[47].

In the second part of the paper, as an illustrative example, we adapt some well-
known image denoising techniques to the correlated case, using the noise estima-
tion techniques described before. Many of the most popular filtering algorithms are
based on the statistical characterization of noise, underlying the assumption that it
can be considered as a stationary process. We show that the use of effective values
and the nc-χ models will avoid the reformulation of the methods from scratch.

2 Background: Statistical Model in Correlated Multiple–Coil
MR signals

In [49], authors proposed an alternative model for MR signals from multiple-coil
systems. In this section, we will go over that model, its implications over the final
CMS and the way to apply the main equations in filtering and noise estimation
problems.

Noise in multiple coils systems, if the k-space is fully sampled and SoS is used
to recover the CMS, is usually assumed to follow a nc-χ model [27, 46, 47, 107]
with parameters L (number of coils) and σ2

n (variance of noise in each coil) and with
Probability Density Function (PDF):

pML
(ML|AL, σn, L) =

A1−L
L

σ2
n

ML
L e
−M

2
L+A2

L
2σ2n IL−1

(
ALML

σ2
n

)
u(ML), (1)

with A2
L(x) =

L∑
l=1

|Al(x)|2 and Al(x) the original complex signal in each coil,

IL(.) theL-th order modified Bessel function of the first kind, and u(.) the Heaviside
step function. In the background, this PDF simplifies to a central χ (c-χ).

The CMS will only show nc-χ statistics if the variance of noise is the same for
all coils, and no correlation exists between them. However, it is well known that
in phased array systems noise correlations do exist [38, 39, 40, 41] and they can
seriously affect the statistical distribution of data, especially for modern machinery
with a large number of receiving antennae.
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In the general case, assuming L coils, the covariance matrix between them, Σ2,
is an arbitrary, symmetric, positive definite matrix, where the off-diagonal elements
stand for the correlations between each pair of coils. In this case, the actual PDF
is not strictly a nc-χ. However, since correlations affect the number of Degrees of
Freedom (DoF), in [49] it was shown that such a model is a good approximation of
the actual distribution but parameters L and σ2

n must be replaced by their effective
values:

Leff(x) =
A2
T (x) tr

(
Σ2
)

+
(
tr
(
Σ2
))2

A∗(x)Σ2A(x) + ||Σ2||2F
; (2)

σ2
eff(x) =

tr
(
Σ2
)

Leff(x)
, (3)

with ||.||F the Frobenius norm and A(x) = [A1(x), A2(x), · · · , AL(x)]T . Similar
formulation is proposed for GRAPPA reconstructed data in [42].

From these equations, some conclusions can be extracted to be taken into account
in future methods:

1. The effective variance of noise will increase due to the correlations between coils.
2. The effective number of coils will be reduced. Due to the correlation, the distri-

bution will be similar to another system with fewer coils.
3. Both effective values will depend on the position, x. Therefore, the variance of

noise will not be the same for each pixel in the image. Its distribution will be
non-stationary.

4. The product Leff(x) · σ2
eff(x) is a constant value, tr

(
Σ2
)
, that does not depend

on x.

For practical purposes, some simplifications can be made over these two equa-
tions. If we assume (1) that the variance of noise σ2

i = σ2
n is the same for every coil,

and (2) that Ai = Aj for all i, j, and using the following covariance matrix:

Σ2 = σ2
n ·




1 ρ2
12 · · · ρ2

1L

ρ2
21 1 · · · ρ2

2L
...

...
. . .

...
ρ2
L1 ρ

2
L2 · · · 1


 (4)

the effective values may be simplified to:

Leff(x) = L

(
1 + (L− 1)

A2
T (x) 〈ρ2〉+ L σ2

n 〈ρ4〉
A2
T (x) + L σ2

n

)−1

(5)

σ2
eff(x) = σ2

n

(
1 + (L− 1)

A2
T (x) 〈ρ2〉+ L σ2

n 〈ρ4〉
A2
T (x) + L σ2

n

)
, (6)

with 〈.〉 the sample mean operator, so that:
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〈ρn〉 =
1

L(L− 1)

∑

i 6=j

ρnij

If A2
T (x)〈ρ2〉 is comparable to L σ2

n 〈ρ4〉, i.e. the SNR is low, the effective param-
eters will depend on the position x. Therefore the data is no longer stationary, the
noise power varying along with A2

L(x). Two extreme cases can be considered:

1. In the background, where no signal is present and hence SNR=0, the effective
values are:

Leff,B =
L

1 + 〈ρ4〉(L− 1)
(7)

σ2
eff,B = σ2

n (1 + 〈ρ4〉(L− 1)). (8)

2. For high SNR areas, say A2
T

σ2
n
→∞:

Leff,S =
L

1 + 〈ρ2〉(L− 1)
(9)

σ2
eff,S = σ2

n (1 + 〈ρ2〉(L− 1)). (10)

These two cases give respectively the lower and upper bounds of σ2
eff within the

image (vice-versa for Leff).
The model here presented is far from the standard nc-χ generally used, and

clearly very far from the Rician model. As stated before, this mismatch between
model and data will render most of the existing estimation/filtering algorithms inac-
curate. See eq. (8) and (10), for instance: the variance of noise in the background and
in the signal areas will be different. Even considering only these two values, if the
estimation of noise is done using the background (as it has been done traditionally),
there will be a bias if used over the signal areas.

All in all, the model here presented poses some problems over practical noise
filtering and noise estimation methods:

• The noise is non-stationary, i.e., the variance of noise will vary across the image.
The existing noise estimation methods rely on the assumption that the noise is
the same for the whole image.

• Even for the simplest case, the value of noise in the background of the image and
within the signal areas are different.

• Although the number of coils is usually known, the only data generally available
for filtering and noise estimation is the CMS,ML(x), so that the equations of the
model cannot be directly applied. Effective values have also to be estimated.

• Most of the filtering methods in literature also assume an uniform pattern of noise
across the image. When applied to multiple-coil data, they have to be properly
adapted.

In the following sections we propose some practical solutions to solve these prob-
lems.
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E{X} Expectation of random variable X
σ2
X Variance of random variable X
〈ψ〉 Sample mean of set ψi

〈ψ〉 = 1
|Ω|

∑
i∈Ω

ψi

M(xB) Background area of image M(x)
M(xS) Signal area of image M(x)
〈M(x)〉 (Global) sample local mean of image M(x)
〈M(x)〉x Local sample local mean of image M(x)

〈M(x)〉x = 1
|η(x)|

∑
p∈η(x)

M(p)

(η(x) a neighborhood centered in x)
Var(M(x)) (Global) Sample variance of M(x)
Var(M(x))x Sample local variance of M(x)

Var(M(x))x = 〈M2(x)〉x − 〈M(x)〉2x
mode{I(x)} Mode of the distribution of I(x)

mode{I(x)} = arg maxx{pI(x)}
â Estimator of parameter a

Table 1 Notation

3 Noise estimation

Most noise estimation methods for multiple-coils systems are based on the assump-
tion that the signal follows a nc-χ distribution, and accordingly, the background area
of the CMS is described by a c-χ. In [47], a set of noise estimators based on different
moments of the nc-χ and c-χ were presented, all of them relying on the assumption
of uncorrelated coils. According to the results summarized in the previous section,
when correlations exist, the same model can be used, but effective parameters must
be taken into account. The main problem that arises is that the effective values de-
pend on the position x, i.e., the parameters vary across the image, and the methods
proposed for estimation may be no longer valid. In this section, we present a method
to overcome this limitation.

3.1 Estimation of σ2
nL

We will define a noise estimator based on the second order moment of the back-
ground of the image. Following the philosophies proposed in [47] other estimators
may be used, like those based on the sample mean. The second order moment of the
background data, where no signal is present, is defined as

E{M2
L} = 2σ2

nL. (11)
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If effective parameters Leff(x) and σ2
eff(x) are taken into account we can rewrite it

as

E{M2
L(x)} = 2 σ2

eff(x) Leff(x)

= 2 tr
(
Σ2
)

=

L∑

i=1

σ2
i

= 2 L 〈σ2
i 〉

Note that although both effective parameters are x-dependent, the product is not. We
can write

Leff(x) · σ2
eff(x) = L · 〈σ2

i 〉
, σ2

nL (12)

In the particular case in which the variance of noise is equal in each coil σ2
n = 〈σ2

i 〉
and

σ2
nL = L · σ2

n

So, regardless of the correlation between coils, the second order moment does not
depend on x:

E{M2
L(x)} = 2σ2

nL.

Following the noise estimation philosophy in [8, 47] we can define a noise estimator
based on the local sample estimation of the second order moment:

〈M2
L(x)〉x =

1

|η(x)|
∑

p∈η(x)

M2
L(p),

with η(x) a neighborhood centered in x. 〈M2
L(x)〉x is known to follow a Gamma

distribution [47, 45] whose mode is

mode
{
〈M2

L〉x
}

= 2σ2
eff(x)

|η(x)|Leff(x)− 1

|η(x)| ≈ 2σ2
nL

when |η(x)|Leff >> 1. The estimator is then defined as

σ̂2
nL =

1

2
mode

{
〈M2

L(x)〉x
}

(13)

This estimator does not require a previous segmentation of the background, due to
the mode operator. A simplest estimator may also be defined, but segmentation of
the background region is needed:

σ̂2
nL =

1

2
〈M2

L(xB)〉 (14)
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Following the notation in [47], ML(xB) are the background pixels of the CMS.
The same method can be extrapolated to GRAPPA reconstructed data. However,

note that the product Leff(x) · σ2
eff(x is not a constant value [42], but

Leff(x) · σ2
eff(x = tr

(
C2
X(x)

)
,

with C2
X(x) the covariance matrix of the interpolated data for each spatial location.

Thus, a different value will arise for each x. The advantage of using the product is
that tr

(
C2
X(x)

)
does not depend on signal values, but only on the reconstruction

coefficients and on the original covariance matrix. A method for GRAPPA noise
estimation was proposed in [63].

3.2 Estimation of effective values

Although many methods and applications based on the nc-χ use only the σ2
nL

value (see next section), there are other situations in which the effective values of
noise and number of coils are needed. Note that the effective values will now be
x-dependent.

According to eqs. (2) and (3), the effective values depend on the actual value of
the signal in each coil, and on the covariance matrix. Even for the most simplified
versions of the formulae, eqs. (5) and (6), the values will still depend on the corre-
lation coefficients between coils. For the estimation we will consider that the only
data available is the CMS ML(x) and the number of coils L.

To estimate the effective values over the background, we will use the variance of
the c-χ distribution:

σ2
ML

= σ2
n

(
2L− 2

[
Γ 2
(
L+ 1

2

)

Γ 2(L)

])

Let σ̂2
n,B be the estimated variance in the background area. We can simply estimate

it as the sample variance of the segmented background:

σ̂2
n,B = Var(ML(xB)). (15)

To avoid the segmentation of the background, we can use the mode of the histogram
of the variance:

σ̂2
n,B = mode {Var(ML(xB))x} (16)

For more detail the signal and background distributions of the variance in MR data,
check [107].

Regardless the method chosen, we assume that the effective values are constant
through the background and thus we can estimate them through the following itera-
tive process:
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(
σ2

eff,B

)
i+1

=
σ̂2
n,B

2
(
Leff,B

)
i
− 2

[
Γ 2

((
Leff,B

)
i
+ 1

2

)
Γ 2

((
Leff,B

)
i

)
] (17)

(
Leff,B

)
i+1

=
σ̂2
nL(

σ2
eff,B

)
i+1

(18)

with
(
Leff,B

)
0

= L the initialization value. The term σ̂2
nL is estimated as indicated

in the previous section.
The effective values when SNR→ ∞ can be calculated over the signal area,

where the variance is defined

σ2
ML

= σ2
n

(
1 +O

(
1

M4
L

))
≈ σ2

n

Then, we can define

σ̂2
eff,S = mode {Var(ML(xS))x} (19)

Leff,S =
σ̂2
nL

σ̂2
eff,S

(20)

with Var(ML(xS))x the sample local variance of the signal area of the image.
The effective values σ2

eff,B and σ2
eff,S give the lower and upper bounds of the ac-

tual σeff(x)2 across the image. Using the simplified version of the effective variance
of noise in eq. (10):

σ2
eff(x) = σ2

n

(
1 + (L− 1)

AT (x)2 〈ρ2〉+ L σ2
n 〈ρ4〉

AT (x)2 + L σ2
n

)

= σ2
n

(
1 + (L− 1)(1− φn(x))〈ρ2〉+ (L− 1)φn(x)〈ρ4〉

)

with

φn(x) =
Lσ2

n

A2
T (x) + Lσ2

n

=
1

SNR2(x) + 1
, (21)

and SNR2(x) =
A2
T (x)
Lσ2

n
. After some algebra we can write

σ2
eff(x) = (1− φn(x)) · σ2

eff,S + φn(x) · σ2
eff,B (22)

Since 0 ≤ φn(x) ≤ 1, then σ2
eff(x) ∈ [σ2

eff,B , σ
2
eff,S ]. A rough estimation of φn(x)

can be done using the sample second order moment (although more complex esti-
mation could also be done):
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φ̂n(x) =
σ̂2
nL

〈M2
L(x)〉x − σ̂2

nL

(23)

As a final result, the effective values across the image may be estimated as:

σ̂2
eff(x) = (1− φ̂n(x)) · σ̂2

eff,S + φ̂n(x) · σ̂2
eff,B (24)

L̂eff(x) =
σ̂2
nL

σ̂2
eff(x)

(25)

4 Noise filtering

As a practical example of the utility of the different noise parameters estimated in
the previous section, some noise-reduction filters for MR are considered. Many of
the schemes proposed in the last decade are based on the assumption of an under-
lying Rician distribution. Lately, some attempts to extend these methods to parallel
imaging and multiple coils have been made. Regardless of the filter or method, since
most of them are based on a signal and noise statistical model, they rely on the ac-
curate estimation of some noise-related parameters.

On the other hand, it will not be necessary to totally reformulate the filtering
techniques in order to cope with correlation between coils. By using effective values
for number of coils and variance of noise, we are implicitly decorrelating the noise
between coils, and therefore the nc-χ model can be used directly.

4.1 Conventional Approach and NLM

The extension of some noise filtering methods for MR data from Rician to a nc-χ
model is straightforward. As shown before, if this extension takes into account the
effective values for noise and number of coils, it may be valid also when correla-
tion between coils exists. The simplest model based method for Rician noise was
proposed by McGibney et al. in [4]. The so-called conventional approach (CA) is
basically an averaging of the squared signal with bias removal, assuming a Rician
distribution of the data. The extension to nc-χ is:

ÂL(x) =
√

max(〈M2
L(x)〉x − 2σ2

nL, 0) (26)

Since the parameter σ2
nL does not depend on the position, it can be estimated using

eq. (13).
Despite the simplicity of the method, the philosophy of bias removal over the sec-

ond order moment has been applied to more complex filters, such as nonlocal means
(NLM) schemes [88, 140, 13]. If 〈M2

L(x)〉x is replaced by the NLM of M2
L(x), the
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result will be a NLM filter for nc-χ data, similar to the unbiased schemes proposed
in [12, 130, 11].

ÂL(x) =
√

max(NLM(M2
L(x))− 2σ2

nL, 0) (27)

A similar philosophy for other filtering schemes may be found in [91, 73, 141].
The advantage of working with the second order moment is that the noise does

not depend on the position within the image. As long as we work with σ2
nL, the

scenario is alike the non-correlated case.
What is more, if the second order moment is used for noise estimation –as in

eq. (13). and eq.(14)–, note that E{M2
L(xB)} (the second order moment of the

background) follows the identity:

E{M2
L(xB)} =





2σ2
n Rayleigh data

2σ2
nL c-χ data

2σ2
effLeff = 2 tr

(
Σ2
)

Correlated c-χ data

Whatever the case, Rician, correlated or no-correlated nc-χ, the signal estimator
will be exactly the same:

ÂL(x) =
√
E{M2

L(x)} − E{M2
L(xB)} (28)

and eq. (26) and eq. (27) are therefore practical implementations of eq. (28). The
main advantage of this feature is that all the software and methods relying on
eq. (28), initially designed for Rician noise, will also be valid for other kinds of
noise. As a final recall, this is only valid if the second order moment is used for
noise estimation. If any other method is used, the estimator may differ for different
kinds of noise.

4.2 LMMSE estimator

A Linear Minimum Mean Square Error (LMMSE) estimator for the Rician model
was proposed in [6, 8]. This filter has been extensively used due to its simplicity,
speed, and robustness, see for instance [142, 143, 144]. Some modifications may
also be found in [62, 9]. The extension to uncorrelated nc-χ data is straightforward,
as presented in [10]:

Â2
L(x) = 〈M2

L(x)〉x − 2Lσ2
n +KL(x)

(
M2
L(x)− 〈M2

L(x)〉x
)
, (29)

where KL(x) is defined as

KL(x) = 1− 4σ2
n

(
〈M2

L(x)〉x − Lσ2
n

)

〈M4
L(x)〉x − 〈M2

L(x)〉2x
. (30)
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Unlike the filters in the previous section, the one here defined depends not only on
Lσ2

n, but also on σ2
n. If no correlation between coils exists, we can easily estimate

this parameter as σ2
n = σ2

nL/L. However, once correlations are present, this value
would underestimate the actual level of noise. Thus, in order to cope with the corre-
lation, effective parameters must be used:

Â2
L(x) = 〈M2

L(x)〉x − 2σ2
nL +KL(x)

(
M2
L(x)− 〈M2

L(x)〉x
)
, (31)

KL(x) = 1−
4σ2

eff(x)
(
〈M2

L(x)〉x − σ2
nL

)

〈M4
L(x)〉x − 〈M2

L(x)〉2x
. (32)

In this case, not only σ2
nL but σ2

eff(x) has to be estimated. Using eq. (24) KL(x)
becomes:

KL(x) = 1− 4

(
〈M2

L(x)〉x − 2σ2
nL

)
σ2

eff,S + σ2
nLσ

2
eff,B

〈M4
L(x)〉x − 〈M2

L(x)〉2x
.

5 Materials and methods
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Fig. 1 Synthetic phantom generation. From a single slice from BrainWeb, the sensitivity maps are
simulated and correlated noise is added to every coil. The CMS is obtained by SoS.
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Fig. 2 Synthetic MR image from Brainweb used for the noise estimation experiments. An 8-coil
system is simulated.

For the sake of validation, the following experiments are considered:

1. Noise estimation: To test the noise estimation methods proposed, synthetic ex-
periments are considered. A synthetic phantom is built using different levels of noise
and different correlations between coils, following the scheme in Fig. 1. The starting
point is a 2D synthetic slice S0(x) from a BrainWeb MR volume [53], with inten-
sity values in [0− 255]. The average intensity value for the White Matter is 158, for
the Gray Matter is 105, for the cerebrospinal fluid 36 and 0 for the background. An
8-coil system is simulated using an artificial sensitivity map coded for each coil so
that A2

L(x) =
∑
l |Al|2 = S2

0(x). The signal in each coil is corrupted with complex
Gaussian noise with variance σ2

n (both in the real and imaginary parts) ranging in
[5 − 30] and a correlation coefficient between coils ρ2 ranging in [0.01, 0.4]. The
CMS is reconstructed from the noisy data in each coil using SoS. 100 realizations
are done for each pair [σ2

n, ρ
2].

From the phantom, assuming we just know the CMS ML(x) and the number of
coils L, the following parameters are estimated:

1. σ̂2
nL using both eq. (13) and eq. (14).

2. Effective noise in the background: σ̂2
eff,B using eq. (17).

3. Effective noise in the signal areas, σ̂2
eff,S using eq. (19).

4. Global value σ̂2
eff(x) from eq. (24).

All the sample local moments are calculated using 7×7 neighborhoods. For the first
three cases, in which the estimated values are scalar, the quality measure is defined
as the ratio:

Q =
estimated value
theoretical value

.

Accordingly, the closer to one, the better the estimator. For the last case, since
σ̂2

eff(x) is an image the average of the quality measure for every x is considered.
Finally, for each pair [σ2

n, ρ
2] the average of the 100 experiments is considered.
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To test the influence of the assumption Ai = Aj used to define the estimators,
the previous experiment is repeated, but considering uniform sensitivity maps. This
way, the signal in each coil (before adding noise) is the same. Results are compared
with the previous experiment.

2. Noise filtering: In the second experiment, the influence of the correlation over
filtering will be studied. To that end, the phantom generated in the first experiment is
used. We will consider different values for the original variance of noise, σ2

n, and ρ2

ranging in [0.01, 0.3]. In order to study only the error due to the filtering model, for
the experiments the actual values of the effective parameters will be used, calculated
from the complex data. First, we will compare the following LMMSE estimators:

1. cχ-LMMSE: The nc-χ version of the estimator assuming correlations between
coils, proposed in eq. (31).

2. χ-LMMSE: The nc-χ version without correlation, proposed in [10]. For this case
we will consider σ2

n = σ2
nL/L.

3. LMMSE: The Rician version proposed in [6, 8], assuming σ2
n = σ2

nL . This as-
sumption is based on the estimation of σ2

n. If Rician data is assumed (rather that
nc-χ) and the estimation of σ2

n is done using the second order moment, what we
are really estimating is σ2

nL , see [107].

Secondly, the different nc-χ based filters proposed in Section 4 are compared
among them for different σn and ρ2 parameters:

1. cχ-LMMSE: The nc-χ LMMSE proposed in eq. (31).
2. NLM: The NLM in eq. (27). The fast implementation proposed in [13] is used.
3. CA: The conventional approach in eq. (26).
4. Wavelet: In order to compare with a Wavelet-based filter, the implementation

proposed in [115] by Pižurica is used.

To compare the restoration performance of the different methods, two quality
indexes are used: the Structural Similarity (SSIM) index [126] and the Quality In-
dex based on Local Variance (QILV) [127]. Both give a measure of the structural
similarity between the ground truth and the estimated images. However, the former
is more sensitive to the level of noise in the image and the latter to any possible
blurring of the edges. Both indexes are bounded; the closer to one, the better the
image. We will use both as a measure of the noise removed from the image. In ad-
dition, the QILV will also act as an indicator of the edge blurring: due to its nature,
any minimal smoothing of the edges will cause the index to drop down. Finally, the
square root of the mean square error (sMSE) is also calculated. These three quality
measures are only being applied to those areas of the original image greater than
zero; this way the background is not taken into account when evaluating the quality
of each method. The average of 15 experiments is considered for each σn, each ρ2

and each filter.

3. In vivo data: As a final experiment, we provide an illustrative in vivo example
with real data. 20 identical and independent repetitions of a DWI data set with one
baseline image and 15 gradient directions were successively taken from a healthy
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Fig. 3 Estimation of noise-related parameters for the synthetic phantom. Variable sensitivity maps
are used.

volunteer. To keep a reasonable acquisition time, one axial slice was collected in
a 3T, 8-coil (without down-sampling) Philips scanner using a diffusion parameter
b = 1, 200s/mm2. To obtain a silver standard, we have averaged the 20 repetitions
in each of the eight coils, so that we obtain eight clean channels which are further
combined using SoS to compound the final signal2. This averaged image is com-
pared to one realization and the different filtering techniques. In addition, visual
comparison will also be used.

6 Results

Results for the noise estimation experiments with the synthetic phantom are on
fig. 3 (variable sensitivity maps) and fig. 4 (homogeneous sensitivity maps). In both
cases, the estimators proposed for σ2

nL show a very good behavior. The one based
on the segmented background, as expected, is the one with the more consistent esti-
mation. However, the one based on the mode, shows also a very good performance
and coherence for multiple σn and ρ2 values. In addition, the latter does not require
a prior segmentation of the background.

An accurate estimation of σ2
nL is the keystone for a good estimation of the ef-

fective parameters, if needed, and assures and unbiased filtering for the methods
proposed in the paper. In addition, since σ2

nL is constant across the image and re-

2 Due to phase-shifts between the different realizations, the average has had been done over the
Rician envelope of each coil, using a Rician-MLE scheme [82]
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Fig. 4 Estimation of noise-related parameters for the synthetic phantom. Uniform sensitivity maps
are used.

gardless the correlation level ρ2, the estimation can be properly done for a wide
range of values.

The estimated effective value of noise for the different cases, shows also a good
behavior, but with greater error. First, for σ2

eff,B (variance of noise in the back-
ground) there is an underestimation as ρ2 grows. The same underestimation is done
for all the σn. This is due to the mismatch between the real probabilistic model of
the data and the nc-χ assumed. As shown in [49], as ρ2 grows, also does the error
in the model.

On the other hand, the estimation of σ2
eff,S (noise in the signal areas) worsens as

the noise grows. There is also a slight decay with ρ2, but less noticeable. The effect
this time is related to the large SNR assumption: as σ2

n grows, the assumption differs
from reality. In addition, to estimate this parameter, the assumption Ai = Aj was
also made. The error shown in fig. 3, where the signals are different form coil to coil
is also larger than the coil in fig. 4. According to this, there is also a source of error
introduced by this assumption.

Finally, the global error when considering σ2
eff(x) lies within acceptable values

in both cases. This values will be enough for filtering algorithms. For the sake of
illustration, one particular case of σ2

eff(x) is shown in fig.5.
Quantitative results of the filtering experiment with synthetic data are on fig. 6

and fig. 7. For visual comparison check fig. 8. The first comparison is done for
the LMMSE-based schemes, with two different levels of noise. In both cases, the
SSIM index is better for the Rician case. This can be explained by the nature of
the index itself: the SSIM index measures the amount of noise removed, but it does
not take into account any blurring of the edges. According to the theoretical model,
the Rician LMMSE uses a overestimated level of noise, and hence over-smooths
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Fig. 5 Estimated effective standard deviation of noise and actual value (estimated from simulated
values). σn = 10 and ρ2 = 0.1.
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Fig. 6 Quality measures for the LMMSE-based schemes filtering experiment.

the image. Drawing our attention to the QILV index, which is sensitive to blurring
of the edges, the value drops for the Rician LMMSE. The blurring can be seen in
the example in Fig. 8-(g). On the other hand, the χ-LMMSE (without considering
correlations between coils) implicitly uses an underestimated value of noise. As
a result, its filtering capability is smaller than the cχ-LMMSE. This can be seen
in smaller SSIM values for the χ-LMMSE, smaller or equal values of QILV and
greater sMSE. Visual inspection of Fig. 8-(e) and 8-(f) shows that the signal area of
the image is noisier for χ-LMMSE.

Secondly, different filtering schemes are compared in Fig. 7, also for the synthetic
data. In all the cases, the NLM proposed and the cχ-LMMSE are the ones showing a
greater noise reduction (SSIM values) while keeping the edges and structures (QILV
values). Visually, the NLM scheme is the one showing the better results for these
experiments. The advantage of the cχ-LMMSE is that it is computationally simpler
than NLM (though the implementation proposed in [13] considerably improves the
performance and speed of the method).

Finally, in vivo results are depicted in Fig. 9. Only 4 DWIs of the 15 are shown
for illustration. The different methods perform as with synthetic data. Wavelet based
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Fig. 7 Quality measures for different noise filtering schemes experiment.

(a) Original (b) Noisy (c) CA (d) Wavelet
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Fig. 8 Visual comparison: Synthetic slice from BrainWeb with different filtering methods. Param-
eters: 8 coils, σn = 15, ρ = 0.15.

filter, as optimized for Rician data, overfilters the image, blurring structures. The cχ-
LMMSE scheme removes noise keeping structures, although there is a slight blur in
the DWIs when compared to the averaged image. The χ-LMMSE, as expected, does
not filter the image, since it is not considering effective values for the variance of
noise. Finally, the NLM scheme removes all the noise, but the resulting data looks
a bit unrealistic (mainly in the DWI).
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Fig. 9 Visual comparison: Filtering of baseline and 4 DWI from DWI data. Real data from a 3T
Philips scanner with 8 coils.

7 Discussion and Conclusions

The practical implications of the correlations between coils in multiple-coil systems
have been studied. It is well known that in phased array systems noise correlations
do exist between coils [38, 39, 40, 41]. The effects of these noise correlations have
been usually left aside, justified by a minimal visual effect over the final image.
However, currently, the use of MRI data is not reduced to visual inspection. Ten-
sor estimation, filtering, segmentation, feature extraction, and many automatic and
semi-automatic procedures rely on a well-defined statistical model of the signal and
noise. It is in these cases that correlations may seriously effect the data, since they
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may alter the underlying model. As previously shown in [49], the correlations be-
tween coils modify the data statistics, so that the final CMS is similar to another
one with a reduced number of coils and a greater variance of noise. This modifi-
cation will be especially significant for modern machinery with a large number of
receiving antennae.

From a practical point of view, the effect of the correlations between coils in
multiple-coil systems makes the probabilistic model for the CMS differ from a nc-χ
model, which is the distribution usually assumed for multiple–coil data. Luckily,
a nc-χ model can still be assumed with a small error if effective parameters are
considered for the variance of noise and the number of coils. Thus, main processing
techniques, such as filtering or noise estimation, that are valid for a nc-χmodel, will
still be valid in correlated systems, as long as they are reformulated to cope with
effective values. In this paper, that reformulation has been done for two practical
cases: noise estimation and model-based noise filtering.

Once multiple coils and correlations are considered, it is not obvious which is
the level of noise of the image. As a result of the correlation (or the reconstruction
procedure if GRAPPA is considered), the final noise in the CMS is non-stationary,
i.e., the variance of noise will vary across the image. Even for the simplest case,
the effective value of noise in the background of the image and within the signal
areas will be different. It would imply an augmentation of the complexity of many
model based algorithms. However, the main parameter to have into account is no
longer the original variance of noise σ2

n of its effective version σ̂2
eff(x), but σ2

nL.
This parameter is constant through the image, even when the effective variance of
noise is not. This feature constitutes an advantage that should be used when de-
signing processing techniques. As previously shown in the experiments, σ2

nL, for
being a single value for the whole image, is an easy parameter to estimate, unlike
the effective parameters, whose estimation is more convoluted and less precise.

Using noise-filtering as illustration, we have also shown that when working with
model-based methods, it is necessary to adapt this methods to the new model of
noise. The correlated case generalizes the non-correlated one. For example, a proper
selection of the magnitude being estimated allows to use the well-known NLM
scheme as it is through eq. (28), without any further modification that increases
its complexity.

In addition, experimental results show that in practical cases, such as filtering,
a proper model will improve the performance. As an illustration, we have chosen
the LMMSE scheme, for being an estimator totally based on the underlying model
of signal and noise. Thus, it is particularly sensitive to mismatches between the
model and the data. In the experiments carried out, we can see that assuming Rician
data will implicitly mean overestimating the noise. This results in over-smoothed
data, blurring of the edges, and spoiling of fine structures. On the other hand, if the
effective values are not used, underestimation of the variance arises even when the
nc-χ model is assumed. As a result, the method has a poor denoising performance.

Finally, we want to recall that the study here done is based on a SoS reconstruc-
tion of the CMS. Although it is initially valid for correlated multiple-coil fully-
sampled data, it could be easily extended to GRAPPA, assuming a new covariance
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matrix derived from the reconstruction process. The main difference when GRAPPA
is considered is that the product Leff(x) · σ2

eff(x) is not a constant, but a different
value for each point in the image, and therefore it must be estimated using an ad-hoc
method. Furthermore, if other kind of reconstructions different from SoS are used,
the whole study must be redone, although the main implications remain. The study
is also not valid for all those parallel methods that carry out the reconstruction in the
x-space (like SENSE), since the nc-χ distribution is not guaranteed.

In addition, the filters and noise estimators proposed in this paper are not intended
to be ultimate. Our purpose here was to show how proper corrections must be done
over well known algorithms when dealing with correlations between coils, and the
advantage in doing so. Many other filtering methods can be proposed, and surely
they will overcome the ones in this paper. More accurate noise estimation methods
for the effective variance of noise can also be developed, based for example on those
proposed in [47]. However, our aim was mainly to clarify what we are talking about
when we say noise in this framework, and how to deal with correlated multiple coil
systems from a signal processing point of view.
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About the background distribution in MR data:
a local variance study

Santiago Aja-Fernández, Gonzalo Vegas-Sánchez-Ferrero, Antonio Tristán-Vega∗

Abstract A model for the distribution of the sample local variance of Magnetic
Resonance data is proposed. It is based on a bimodal Gamma distribution, whose
maxima are related to the signal and background areas of the image. The model
is valid for single– and multiple–coil systems. The proposed distribution allows
us to characterize some signal/background properties in MR data. As an example,
the model is used to study the effect of the background size over noise estimation
techniques and a method to test the validity of background-based noise estimators
is presented.

1 Introduction

Noise is known to be one of the main sources of quality deterioration in Magnetic
Resonance (MR) data. Not only visual inspection but also processing techniques
such as segmentation, registration or tensor estimation in Diffusion Tensor MRI
(DT-MRI) will be affected or biased due to the presence of noise [4, 5, 6]. In High
Angular Resolution Diffusion Imaging (HARDI) for instance, to achieve a speedup
in the acquisition time the temporal averaging is reduced; as a consequence, the
noise power is increased proportionally to the square root of the speedup.

Noise in the k-space in MR data is usually assumed to be a zero-mean uncorre-
lated complex Gaussian process in each scanner coil, with equal variance in both
the real and imaginary parts. As a result, in single coil systems, magnitude data in
the spatial domain is modeled using a Rician distribution [44, 5], which reduces to a
Rayleigh in the background. In the same way, the composite signal in coils systems

∗ This chapter was previously published as: S. Aja-Fernández, G. Vegas-Sánchez-Ferrero, A.
Tristán-Vega. “About the background distribution in MR data: a local variance study”. Magnetic
Resonance Imaging, Vol. 28, No. 5, Jun. 2010, pp 739-752
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with multiple channels under some assumptions may be modeled as non–central Chi
distributed [27, 46]. In the background, this distribution reduces to a central Chi.

The characterization of background and signal areas in MR data is an impor-
tant source of information that has been used in a myriad of applications, such as
segmentation [138], noise estimation [37, 47, 84], quantification of geometric dis-
tortions in tissues [145] and nonstationarity tests of the data [146].

In the current paper, a study of the relation between signal areas and background
is carried out. It is based on the properties of the distribution of the sample local
variance (SLV) in both regions, since it keeps important information of the structural
content in the image. The distribution of the SLV has been previously used in the
image processing and analysis field as a way to study the image structure [147], to
estimate the level of noise [148, 108, 8], to predict spatial patterns of textures [149]
or as the keystone for image quality assessment methods [127].

The particular features of signal and noise in MR data make the SLV a pow-
erful source of information about noise, background and structure. A study of the
properties of the SLV in MR data is carried out in the paper for both single– and
multiple–coil systems. The probability distribution of the SLV is well known for
certain kind of data [122, 150]; the SLV of Gaussian Random variables behaves like
a Gamma distribution (or Chi-Square for normalized variables). However, for other
parent distributions, this PDF can only be approximated [151, 152, 150, 153]. A
preliminary study of SLV for single–coil MR data can be found in [8]. In this pa-
per, a simplified model based on a bimodal Gamma distribution is proposed for MR
data.

As a practical application of the proposed approach, a method to test the valid-
ity of noise estimation techniques is presented. Many different ways to accurately
estimate the noise power from MR data have been proposed in literature. Most of
them rely on a statistical model for the signal/background areas. The assumption
of a homogeneous noisy background is the keystone of these methods, and also
one of their main drawbacks: the models need a certain amount of background pix-
els to perform the estimation. Conversely, new scanning techniques and software
eliminate the most part of the noisy background, drastically reducing the number of
points available for estimation. Thus, many estimation techniques may be no longer
valid. The method here proposed, based on the properties of the distribution of the
previously introduced SLV, will check whether the number of available background
pixels is enough to carry out the estimation with a particular method.

2 Theory

2.1 Statistical noise model in single and multiple coil MR signal

For a single–coil acquisition the complex spatial MR data is typically modeled as a
complex Gaussian process, where the real and imaginary parts of the original signal
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are corrupted with uncorrelated Gaussian noise with zero mean and equal variance
σ2
n. The magnitude signal M(x) is the Rician distributed envelope of the complex

signal [5] with probability density function (PDF) [44]:

pM (M |A, σn) =
M

σ2
n

e
−M

2+A2

2σ2n I0

(
AM

σ2
n

)
u(M), (1)

with A = A(x) the original signal if no noise is present, I0(.) the 0th order modified
Bessel function of the first kind and u(.) the Heaviside step function. For high Signal
to Noise Ratio (SNR), the Rician distribution approaches a Gaussian distribution.

In the image background, where the SNR is zero due to the lack of water-proton
density in the air, the Rician PDF simplifies to a Rayleigh distribution with PDF

pM (M |σn) =
M

σ2
n

e
− M2

2σ2n u(M). (2)

In a multiple–coil MR acquisition system the acquired signal in the complex
spatial domain in each coil may be also modeled as the original signal corrupted
with complex additive Gaussian noise, with zero mean and equal variance σ2

n. If
no subsampling is done in the k-space, the composite magnitude image may be ob-
tained using methods such as the sum-of-squares (SoS) [27, 38]. Assuming the noise
components to be independent and identically distributed (IID), the envelope of the
magnitude signal ML(x) will follow a non–central Chi distribution with PDF [27]:

pML
(ML|AL, σn, L) =

A1−L
L

σ2
n

ML
L e
−M

2
L+A2

L
2σ2n IL−1

(
ALML

σ2
n

)
u(ML), (3)

with L the number of coils and AL(x) =
√∑L

l=1 |Al(x)|2 the original signal.
Eq. (3) reduces to the Rician distribution for L = 1. In the background, this PDF
simplifies to a central Chi distribution with PDF:

pML
(ML|σn, L) =

21−L

Γ (L)

M2L−1
L

σ2L
n

e
−M

2
L

2σ2n u(ML), (4)

which reduces to Rayleigh for L = 1.
The latter statistical model is the usual one for the composite magnitude signal

in phased array coils and parallel imaging assuming that no subsampling is done in
the k-space, and the image is reconstructed using the SoS method. However, one
of the aims of parallel imaging is precisely to accelerate the acquisition process by
sub–sampling k-space data in each coil. In these cases, reconstruction methods have
to be used in order to suppress the aliasing and underlying artifacts created by the
subsampling. Dominant among such methods are SENSE [32] and GRAPPA [33],
reviews of which can be found in [30, 31]. From a statistical point of view, the re-
construction will affect the stationarity of the noise in the reconstructed data, i.e.
the spatial distribution of the noise across the image [43]. As a result the statistics
of the composite magnitude signal are not strictly stationary. In addition, when re-
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constructed with GRAPPA, σ2
n may also vary from coil to coil and therefore eq. (3)

does not exactly hold, since it assumes that σ2
n is the same for every coil. In practical

situations, if the variance of noise is homogeneous enough across pixels and coils,
data are usually considered to follow a non-central Chi distribution if reconstructed
with GRAPPA and SoS [46].

2.2 A model for the sample local variance of MR data

The (biased) SLV of an image M(x) is defined as

V̂ar(M(x)) =
1

|η(x)|
∑

p∈η(x)

M2(p)−


 1

|η(x)|
∑

p∈η(x)

M(p)




2

(5)

with η(x) a neighborhood centered in x. For the sake of simplicity in notation, let
us denote |η(x)| = N . We define the random variable V = V̂ar(M(x)), whose
moments are studied in Appendix 6.1. Moments of the distributions used hereafter
may be found in Appendix 6.2.

Let us first consider the Rayleigh/Rice MR model. The distribution of the SLV for
Rayleigh data may be accurately approximated2 by the distribution of the difference
of two dependent Chi-Square random variables with the same degrees of freedom
[8, 45]. For x ≥ 0 and an even number of degrees of freedom the PDF becomes

pV (x) =
|x|N−1exp

(
− 1

4α
+x
)

Γ (N) [2σ2
1σ

2
2(1− ρ2)γ−]

N

N−1∑

k=0

Γ (N + k)

Γ (k + 1)Γ (N − k)

(
2

γ−|x|

)k
(6)

with

γ− =

[
(σ2

2 − σ2
1)2 + 4σ2

1σ
2
2(1− ρ2)

]1/2

σ2
1σ

2
2(1− ρ2)

(7)

α+ = γ− +
σ2

2 − σ2
1

σ2
1σ

2
2(1− ρ2)

, (8)

σ2
1 =

σ2
n

N , σ2
2 ≈ σ2

n

N
π
4 and ρ the correlation coefficient, which for large N may be

approximated as
ρ ≈ π

4
√

16π − 4π2
≈ 0.95 (9)

Although eq. (6) is an accurate approximation of the PDF of the actual distribution,
the whole expression is not useful to work with. In addition, structural properties

2 Note that to obtain the final PDF of V it is necessary to calculate the PDF of the sum of Rayleigh
variables. This is a classical-hard-to-find problem in communications. Some approximations are
usually employed. Here, the simplified one in [123, 8] is considered.
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cannot be easily extracted from the expression. Likewise, the SLV of the Rician
data may be approximated by the distribution of the difference of two dependent
Noncentral Chi-square distributions [8]. To avoid the use of such involved PDFs, an
alternative simplified model will be considered.

In the case of N IID normalized Gaussian variables, Cochran’s theorem shows
that the SLV follows a Chi-square distribution withN−1 degrees of freedom [122],
which becomes a Gamma distribution for non-normalized variables. The resultant
distribution does not depend on the mean of the original Gaussian variables. For
other variables, however, the exact distribution of the SLV cannot be achieved, and
it has to be approximated. In [151] a Gaussian PDF is used, whereas in [152] a more
general approximation is proposed, based on a Chi-square distribution.

In MR data, when the SNR is high enough, it is a common task to approximate
the Rician distribution by a Gaussian. As a consequence, the SLV of the Rician
area of an MR image can be approximated by a Gamma distribution. In the results
section we will check the goodness of these approximation. Taking into account this
result together with the approximation in [152], one can also think of the Gamma
distribution as a proper candidate to approximate the SLV of other distributions.

We will assume that the SLV of both Rician and Rayleigh data follows a Gamma
distribution, with PDF:

pV (x) = xki−1 e−x/θi

Γ (ki)θ
ki
i

. (10)

Parameters ki and θi may be estimated from the mean E{V } and variance σ2
V of

the actual distribution (that will be derived next) as

ki =
E2{V }
σ2
V

θi =
σ2
V

E{V } .

The mean and the variance of the SLV for each distribution are estimated using the
moments derived in Appendix 6.1. For the Rayleigh case, assuming N large they
become:

E{V } = 2σ2
n

(
1− π

4

)(N − 1

N

)

≈ 2σ2
n

(
1− π

4

)
(11)

σ2
V =

σ4
n

N

(
4 + 2π − π2 +O

(
1

N

))

≈ σ4
n

N
(4 + 2π − π2). (12)

Another interesting parameter in MR-related distribution is the mode. It has been
previously used as a way to estimate noise parameters and to identify different re-
gions [8]. We will use it later to identify the noise and background contributions.
The mode of a Gamma distribution is calculated as
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mode{V } = E{V } − σ2
V

E{V }

= σ2
n

(
2− π

2
− 1

N

(
5π2 − 16π

2π − 8

)
+O(1/N2)

)

≈ σ2
n

(
2− π

2

)

which fits the value derived in [8].
For the Rician data, in order to approximate the mean and the variance, a series

expansion of the Laguerre polynomials is considered, assumingN large andA2 >>

σ2
n. For x = A2

2σ2
n

the mean and variance of the SLV will be

E{V } =
(N − 1)σ2

n

N

(
1− 1

4x
− 1

8x2
+O

(
x−3

))

≈ (N − 1)σ2
n

N
(13)

σ2
V =

(N − 1)σ4
n

N2

(
2− 1

x
+

3(2− 5N + 3N2)

8N(N − 1)x2
+O

(
x−3

))

≈ 2(N − 1)σ4
n

N2
(14)

Note that the simplifications made only hold for high SNR. In Fig. 1 the mean and
the standard deviation are depicted versus these simplified values for different SNR
(with SNR= A/σn). The results show that for SNR> 5 the approximations are
nearly the actual values. (Note that the closer to one the better the approximation).
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Fig. 1 (a) Actual mean of the SLV of Rician data divided by σ2
n (the proposed simplification).

(b) Actual standard deviation of the SLV of Rician data divided by
√
2σ2
n/
√
N (the proposed

simplification).

The mode of the distribution is calculated as

mode{V } = σ2
n

(
1− 3

N
+O

(
(σ/A)2

))
≈ σ2
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Thus, assuming a Rician image with a Rayleigh background and the high SNR
in the signal areas, the distribution of the SLV for the whole image can be ap-
proximated by a bimodal Gamma distribution, defined as the weighted sum of two
Gamma distributions, i.e.

pV (x) = WB · pVB (x) +WI · pVI (x)

= WB · xkB−1 e−x/θB

Γ (kB)θkBB
+WI · xkI−1 e−x/θI

Γ (kI)θ
kI
I

(15)

with WB + WI = 1. The first term is the Gamma approximation for the Rayleigh
area and the second is the Gamma approximation for the Rician area.

The same reasoning may be applied over the central/non-central Chi model. Note
that under the high SNR assumption, a non–central Chi may be approximated by a
Gaussian, and therefore its SLV may also be approximated by a Gamma distribution.

Let us calculate the mean, the variance and the mode of the SLV distribution of
central Chi data:

E{V } =
2σ2

n(N − 1)

N

(
L−

(
Γ (L+ 1/2)

Γ (L)

)2
)

(16)

σ2
V =

4σ4
n

N

(
L+ 8L

Γ 2(L+ 1/2)

Γ 2(L)
− 4

Γ 4(L+ 1/2)

Γ 4(L)
− 4

Γ (L+ 1/2)Γ (L+ 3/2)

Γ 2(L)

)
+O

(
1

N2

)
(17)

mode{V } = 2σ2
n

(
L− Γ 2(L+ 1/2)

Γ 2(L)

)
+O

(
1

N

)
≈ 2K(L)σ2

n (18)

withK(L) =
(
L− Γ 2(L+1/2)

Γ 2(L)

)
. The evolution of this parameter with L is depicted

in Fig. 2.
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Fig. 2 Evolution of K(L) with L.

For the non–central Chi (assuming high SNR):
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E{V } =
σ2
n(N − 1)

N

(
1 +

1− 2L

x
+

3− 8L+ 4L2

8x2
+O

(
x−3

))

≈ σ2
n(N − 1)

N
(19)

σ2
V =

σ4
n(N − 1)

N2

(
2 +

1− 2L

x
+O

(
x−2

))

≈ 2σ4
n(N − 1)

N2
(20)

mode{V } = σ2
n

(
1− 3

N
+O

(
(σn/A)2

))

≈ σ2
n (21)

Note that a series expansion of the Hypergeometric series 1F1 is needed to achieve
the result. The distribution of the SLV for the whole image can also be approximated
by a bimodal Gamma distribution

pV (x) = WC · xkC−1 e−x/θC

Γ (kC)θkCC
+WM · xkM−1 e−x/θM

Γ (kM )θkMM
(22)

with WC + WM = 1. The first term is the Gamma approximation for the central
Chi area and the second is the Gamma approximation for the non–central Chi area.

2.3 Background influence on noise estimation

Most of the noise estimation methods for MR data in literature rely on the existence
of a homogeneous (either Rayleigh or central Chi) background to carry out the es-
timation [47]. For some, the background must be segmented [86, 81, 27], while
for other techniques a prior segmentation is not needed [37, 136, 83, 8, 84, 47].
Regardless of the chosen method or the necessity of a prior segmentation, this ho-
mogeneous background must be present, and the number of points belonging to this
background must be large enough when compared with the number of points in the
signal areas. However, what large enough is, is not properly defined in literature,
and it will be related with the distribution of the parameter selected for estimation.

Some post processing software in the scanner usually adds a mask to data, whichs
eliminates part of or the whole background, drastically reducing the number of
points available for noise estimation. As an illustration, see the MR slice from a
real acquisition in Fig. 3. In the right image all the pixels with intensity value equal
to 0 are shown in black. A noise pattern can be found around the skull, which cor-
responds to the actual background, but there is also a greater area where a zero
background has been artificially added. This artificial zero background is nowadays
usually found in MR data when dealing with parallel reconstruction, but not only;
even in single coil acquisition a reduction of background areas can be found. See
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Fig. 3 Left: Slice of an MR volume (from the baseline of a SENSE EPI DT-MRI acquisition).
Right: In black all the pixels with intensity value equal to 0. A zero-level background has been
artificially added in the scanner.

σn
2 σn

2

Rayleigh Maximum

Rice Maximum

(2−π/2)

Fig. 4 Position of the maxima of the SLV distribution in MR data, assuming a Rayleigh/Rician
model.

for instance the single coil acquisition we will later use for experiments in Fig. 9.
The reduction of the background area can make estimation based on Rayleigh dis-
tributions fail. Accordingly, for reduced backgrounds, it will be necessary to test if
the number of available points is enough for carrying out the estimation with the
selected parameter, or if an alternative method must be used instead.

To face this problem we propose to use the properties of the distribution of the
SLV of MR data. As described in the previous section, the distribution of the SLV
of MR data assuming Rayleigh/Rician data may be modeled as a bimodal Gamma
distribution. According to the modes of this Gamma distribution, the maximum of
the SLV of the Rayleigh area is located on

(
2− π

2

)
σ2
n and the maximum of the SLV

of the Rician data is placed approximately on σ2
n (under the high SNR assumption),

see Fig. 4 for illustration. Under this assumption, the distribution of the SLV does
not depend on the value of the signal, but only on the value of σn (and sometimes
on the size of the neighborhood used for estimating the SLV, if N is not large).
Thus, the shape and position of the distribution of the Rician area will be constant,
independently of the different intensity values of the image.

When the weight of Rayleigh-related points outruns the number of Rician-related
ones, WB > WI in eq. (15), p(x) has a global maximum at x =

(
2− π

2

)
σ2
n.
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Otherwise the global maximum is at x = σ2
n. Thus, a confidence measure can be

developed by comparing these local maxima with those of the distribution with the
parameter used for estimation.

Method: Let pY (x) be the distribution of certain parameter Y (x) used for esti-
mation, whose maximum is placed at xm:

xm = arg max
x

pY (x) = cmσ
2
n

with cm a constant. Let xB and xI be alternatively the Rayleigh and Rician position
of the maxima for the SLV distribution:

xB = arg max
x

pVB (x) ≈
(

2− π

2

)
σ2
n

xI = arg max
x

pVI (x) ≈ σ2
n

The global maximum of the distribution xG will be either xB or xI . However, it is
not necessary to identify it as Rician of Rayleigh. If

xm
cm

=
xG

2− π/2 or
xm
cm

= xG,

then the noise estimation is feasible to be done using the parameter Y (x), i.e. there
are enough background pixels to perform the estimation. Otherwise, if xm

cm
> xG,

the background assumption fails, and Y (x) is not a proper choice for estimation.
Example: As an illustration, consider the second order moment

Y (x) = 〈M(x)2〉x =
1

|η(x)|
∑

p∈η(x)

M2(p).

Noise estimators based on this parameter have been proposed in literature [81, 8,
47]. For the Rayleigh area, the maximum of the distribution of the sample second
order moment is placed at xm = 2σ2

n [8], i.e. cm = 2.
Three different cases are studied: an image with Rayleigh background, an im-

age with a reduced Rayleigh background and an image without the Rayleigh back-
ground. The distribution of Y (x), say pM (x) is depicted together with the distribu-
tion of the SLV, say pV (x) in Fig. 5. Note that:

• For the image with the Rayleigh background, Fig. 5-(a) the maximum of pM (x)
is placed at 2σ2

n, and the maximum of pV (x) is the Rayleigh maximum, i.e xG =
xB . So, xmcm = 2

4−πxG, and Y (x) can therefore be used for estimation.
• When the number of pixels in the background is drastically reduced, the global

maximum of the SLV distribution is the one belonging to the Rician area, xG =
xI , see Fig. 5-(b). However, for Y (x), the Rayleigh area is still stronger than
the Rician one. As a result, the maximum of the distribution of pM (x) is placed
again at 2σ2

n and xm
cm

= xG. Y (x) can still be used for noise estimation.
• When the Rayleigh background is totally removed, the distribution of the SLV

reduces to a monomodal Gamma, with the maximum xG = xI . As there are not
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Fig. 5 (Normalized) Distribution of the SLV pV (x) (black) and the sample second order moment
pM (x) (red); (a) image with a large Rayleigh background; (b) image with a reduced Rayleigh
background; (c) image without Rayleigh background.
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Fig. 6 Position of the maxima of the SLV distribution in MR data, assuming a central/non-central
Chi model.

enough point for estimation, the maximum of pM (x) is no longer related to the
Rayleigh area, and it is displaced to higher values, see Fig. 5-(c). In this case
xm
cm

> xG, and consequently Y (x) cannot be used for noise estimation.

The same reasoning can also be applied to the central/non-central Chi model.
This time, the maxima of the distributions are located at 2K(L)σ2

n for the central
Chi data and approximately on σ2

n for the non–central Chi (under the high SNR
assumption, see Fig. 6 for illustration), i.e:

xC = arg max
x

pVC (x) ≈ 2K(L)σ2
n

xM = arg max
x

pVM (x) ≈ σ2
n.

As a final remark, we must point out that, although the SLV distribution has been
used here as a way to assess the viability of some noise estimation technique, it could
be used for noise estimation itself. Since a closed expression has been given, i.e. a
bimodal Gamma distribution, one can use least squares or a maximum likelihood
method to find σn, as done in [37, 84, 47] for other parameters.
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3 Materials and methods

For the sake of validation and illustration, the following experiments are carried out:

1. Synthetic data is used to test the Gamma distribution assumption for the SLV
of the different statistical models. Rayleigh, Rician, central Chi and non–central
Chi random data are generated, and the SLV of each set is calculated. The actual
distribution is estimated from the histogram and it is compared to the Gamma
approximation proposed for all cases. To that end, images of 750 × 750 points
are generated, and the SLV is estimated using 7 × 7 windows (i.e. N = 49
points). Different values of σn are considered. For the central/non–central Chi
experiment, L = 8 is considered in all the cases. For the Rician case, assuming
high SNR, the distribution must be independent of the SNR. To better show this
property, the Rician experiment is repeated for different values of A ranging in
[100− 250], as shown in Fig. 7.

Fig. 7 Image for the Rician experiment.

2. A 256× 256 synthetic Rayleigh–distributed image is generated, with a centered
170× 170 square Rician inside. Different values of σn are considered, and A =
200. The distribution of the SLV (using 7×7 windows for estimation) is depicted
together with the bimodal Gamma proposed in eq. (15). The values of weights
and σn are by a least square fitting of the real data.

3. An experiment to test the Gamma approximation over synthetic MR data is car-
ried out. A 181×217×181 MR synthetic volume, originally noise free, from the
Brainweb database [53], Fig. 8-(a), has been artificially corrupted with Rician
noise with σn = 15, Fig, 8-(b). Using the mask in Fig. 8-(c) an artificial zero
background has been added to the noisy image, Fig. 8-(d). The SLV of the noisy
data is calculated using a 3×3×3 square window and its distribution is depicted
for two cases: using the whole Rayleigh background in Fig. 8-(b) and using the
reduced Rayleigh background in Fig. 8-(d). The artificial zero background will
be removed for variance estimation.

4. To illustrate the proposed method to assess a noise estimation procedure, a new
experiment is done. The distribution of the SLV of the noisy synthetic data from
BrainWeb of the previous experiment is compared to two other local parameters
used for estimation: namely the local mean and the second order moment. Us-
ing these moments of the Rayleigh distribution some noise estimators has been
defined in literature [81, 86, 8, 47], as, for example, the following:
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Fig. 8 Slices of a 3D volume from Brainweb. (a) Original image. (b) Image with Rician Noise,
σn = 15. (c) Noise mask. Pixels in black are artificially set to 0 in the final image. (d) Image with
Rician noise using the mask. Color map in Fig. (b) and (d) has been changed to highlight the noisy
areas.

σ̂2
n =

1

2
mode{〈M2(x)〉x}

σ̂n =

√
2

π
mode{〈M(x)〉x}

with 〈M(x)〉x the sample local mean of magnitude imageM(x). To make all the
distributions be a function of σn, the square root of the SLV and the second order
moment will be considered. So, for the experiment, the following distributions
will be considered:

a. pV (x): Distribution of the (square root of the) SLV of the noisy image M(x).
For the reduced background cases, its maximum will be at σn.

b. pM (x): Distribution of the (square root of the) sample local second order
moment of the noisy imageM(x). The maximum of the second order moment
distribution for Rayleigh data is placed at 2σn, so cM =

√
2 and the maximum

of pM (x) will be then be at
√

(2)σn (if the Rayleigh region is big enough).
c. pA(x): Distribution of the sample local mean of the noisy image M(x).

The maxima of the sample mean distribution for Rayleigh data is placed at√
2/πσn.

5. Finally, the Gamma model for the SLV distribution is tested using real MR data.
Two different data sets have been considered. First, the baseline from a single coil
DTI acquisition, scanned in a 1.5 Tesla GE system, slick thickness: 5 mm, size
256× 256× 24 (real data set 1, RD1, Fig. 9); and second one slice of a multiple
coil acquisition, from an 8 coil GE Signa 1.5 Tesla EXCITE 11m4 scanner, FSE
Pulse Sequence, TR=500 ms, TE= 13.8 ms, matrix size= 256× 256, FOV=20×
20 cm, slick thickness= 5 mm (real data set 2, RD2, Fig. 10); the magnitude
image is reconstructed using SoS. For both data sets, the SLV is estimated using
7× 7 square windows, and the PDF is estimated from the histogram. A bimodal
Gamma distribution is fitted to each data set using least squares.
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Fig. 9 Real Data set 1 (RD1). Slice from a single coil DTI-MR acquisition.

Fig. 10 Real Data set 2 (RD2). Slice from an 8-coil acquisition.

4 Results
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Fig. 11 Distribution of the SLV of Rayleigh data. Real data (black) vs. the proposed Gamma
approximation (red) for different σn values.

Results for the first experiment for Rayleigh data are depicted in Fig. 11. The
Gamma approximation totally fits the distribution estimated from the real data for
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any σn value. We can conclude that the Gamma approximation proposed is a good
representation of the SLV distribution for Rayleigh data. To test the effect of the
number of points in the approximation, the real SLV data are plotted vs. the proposed
Gamma distribution in Fig. 12. Different number of points are considered and σ =
10 for all cases. Note that the chosen N correspond to 3 × 3, 5 × 5 and 7 × 7
neighborhoods. As N grows, there is a better fit of the data to the proposed model.
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Fig. 12 QQ plots of the samples of the SLV of Rayleigh data vs. the proposed Gamma distribution.
Different N values are considered and σ = 10.
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Fig. 14 Distribution of the SLV of Rician data for SNR = 3. Real data (black) vs. the proposed
Gamma approximation with simplification (red) and with a better approximation of mean and
variance (green).
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In Fig. 13 the histogram of the SLV of Rician data for different σn values is de-
picted together with the Gamma approximation proposed. As in the Rayleigh case,
the Gamma distribution fits the data as long as the high SNR assumption holds.
However, for low SNR values (Fig. 13-b) the simplifications made before no longer
hold. However, the error commited is not due to the Gamma model proposed, but
to the simplification for large SNR done when the mean and the variance are es-
timated. If necessary, taking more terms in eqs. (13) and (14) will give a better
approximation. For instance, taking the series to a higher order, the following mean
and variance can be considered:

E{V } ≈ (N − 1)σ2
n

N

(
1− 1

2SNR2

)

σ2
V ≈

2(N − 1)σ4
n

N2

(
1− 1

SNR2

)

with SNR=A/σn. Note that this time the SNR value must be known. As an illustra-
tion, the experiment is repeated, and real data histogram vs. Gamma approximation
with these new parameters are shown in Fig. 14. Using the new approximation for
the mean and the variance, the Gamma distribution fits again real data.

It is important to recall that, under the high SNR assumption, the resultant distri-
bution of the SLV does not depend on the value of the signal, but only on the value
of σn and N . Accordingly, regardless of the different intensity values on the image,
the shape and position of the distribution will be constant. To test this assumption,
a square image with different A values ranging in the interval A ∈ [100, 250] (see
Fig. 7) is now used, see Fig. 15. The Gamma distribution totally fits real data, and
the different A values do not influence in the final distribution.

We can conclude that, for the high SNR assumption, the Gamma model is also a
good approximation for the SLV of Rician data. However, the model fails when low
SNR is considered. The inability of the model to follow the data is not due to the
model itself, but to the simplification done when calculating the mean and variance.
If more terms are considered in the series expansion, the Gamma approximation
will also be a good model for low SNR case. However, the mode will no longer be
placed at a value independent of the signal.
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Fig. 15 Distribution of the SLV for a Rician image with multiple levels of signals; A ∈ [100, 250],
σn = 10. Original data (black) vs. theoretical approach.
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Fig. 16 Distribution of the SLV of central Chi data. Real data (black) vs. the proposed Gamma
approximation (red) for different σn values and L = 8.
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Fig. 17 Distribution of the SLV of non–central Chi data for signal value A = 200 and L = 8.
Real data (black) vs. the proposed Gamma approximation (red) for different σn values. Left: High
SNR. Right: Low SNR

Results presented in Fig. 16 and Fig. 17 for the central and non-central Chi exper-
iments present the same results as the Rayleigh/Rician case and the same comments
can be made

For the second experiment, the SLV from a synthetic Rayleigh/Rician image is
compared to the Gamma approximation proposed. Results are in Fig. 18 for different
SNR values. As expected from the previous experiments, as long as the SNR is high
on the Rician area, the assumption holds and the model fits the data. Note that we
have used the simplified version of eqs. (13) and (14), hence the error in the Rician
area for the low SNR values.

For the third experiment, the distribution of the SLV of the noisy images are
depicted in Fig. 19 for both cases: the whole Rayleigh background, Fig. 8-(b) (black
line), and the smaller Rayleigh background in Fig. 8-(d) (red line). The artificial
zero background has been removed for variance estimation. Note that for the first
case the Rayleigh maximum is the absolute maximum (WB > WI ), while in the
second one, the global maximum is the Rician one. According to the model pro-
posed, the maxima should be related as xB

2−π/2 = xI = σn. From the Figure, it can
be effectively seen that xI ≈ σ2

n = (15)2 = 225 and xB =≈ (2−π/2)σ2
n = 98.57.

The fourth experiment is an illustration of the method to test the validity of
the background for noise estimation. Fig. 20-(a) is the case showed in Fig.8-(d).
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Fig. 18 Histogram of the SLV distribution (black) vs. theoretical distribution (red), using least
squares to adjust them.
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Fig. 19 (Normalized by maximum) distribution of the (square rooted) SLV in the MR noisy vol-
ume for σn = 15: for Fig. 8-(b) (black line) and Fig. 8-(d) (red line).

In Fig. 20-(b) the noisy background around the skull has been reduced even more
and in Fig. 20-(c) it has been completely removed. For all the cases, the maximum
of pV (x) is placed at a value slightly greater that σn = 15 (the Rician maximum),
due to numerical issues. The Rayleigh-related maximum is progressively decreasing
as the background is removed. For the first two cases, the maximum of pM (x) is
placed at xM =

√
2σn = 21.21, and the maximum of pA(x) is placed at xA =√

2− π/2σn = 18.79. So, for the first two backgrounds, these parameters may be
used for noise estimation, since xG = xI , xMcM = xG and xA

cA
= xG. However, for

the third case, since the background has been completely removed, the maxima of
pM (x) and pA(x) are displaced to higher values, and therefore, for both parameters
xM
cM

> xG and xA
cA

> xG, and consequently we can state that there is not enough
background for an estimation.

In the last experiment, we simply test the Gamma assumption over real data
sets. Results for RD1 are depicted on Fig. 21, and for RD2 on Fig. 22. Since both
data sets have an homogeneous Rayleigh background, the distributions mainly show
the Rayleigh contribution of the data, i.e just one mode. In both cases, the Gamma
distributions totally fit the real data distribution. Therefore, we can conclude that the
Gamma approximation proposed is a proper representation of the SLV of MR data.
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Fig. 20 (Normalized) Distribution pV (x) (black) vs. pM (x) (red) and pA(x) (blue) for the noisy
volume in Fig. 8. The maxima of the distributions are used for noise estimation. Three different
backgrounds are considered. The size of the background is decreasing from (a) to (c).
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Fig. 21 Single coil real data: Histogram of the SLV distribution of real Data set 1 (black) vs.
bimodal Gamma distribution (red), using least squares to adjust them.
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Fig. 22 Multiple coil real data: Histogram of the SLV distribution of real Data set 2 (black) vs.
bimodal Gamma distribution (red), using least squares to adjust them.

5 Discussion and conclusions

Two main contributions are presented in the current paper: first, a model for the SLV
in MR data is derived and second, as an example of use, the proposed distribution
can be used as a way to test the viability of one particular parameter to be used as a
noise estimator.

The SLV is used as a tool to study the behavior of the signal/background areas in
different MR models. The SLV of Gaussian data is known to follow a Gamma distri-
bution; this PDF has shown to be a very good model for the distribution of the SLV
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of Rayleigh, Rician, central Chi and non–central Chi variables, the usual models
for MR, either for one or multiple coil acquired data. The use of this distribution to
model the background and signal areas of the image will result in a bimodal Gamma
distribution whose maxima are related to the properties of these two areas. Exper-
iments show that the proposed distribution totally fits reall data. For low SNR, the
model fails in the signal areas due to the simplification of the estimated parameters,
but not due to the model itself. If necessary, for low SNR more terms may be added
to the calculation of mean and variance, improving the data fitting of the model.
The price to pay is that the SNR value must be known. Note that this is not useful in
practical situations, where a MR image may have different SNR values in different
regions.

In the current paper the SLV has been used exclusively to analyze MR-based
models of noise, i.e. the Rayleigh/Rician model and the central/non–central Chi.
However, note that the Gamma characterization of the SLV may be extrapolated to
other noise models and other probability distributions, such as the statistical charac-
terization of BOLD signals in fMRI [154, 155, 156].

As an illustration of the proposed model, a method to test background-based
noise estimation techniques has been developed. If the distribution of the param-
eter used for estimation has its maximum at a value related to the noise power, a
comparison with the maxima of the bimodal Gamma distribution will tell if the
number of background pixels is enough to perform such estimation. This test is
motivated by the reduced background we can usually find as a result of modern
scanning techniques. It is not unusual to find that the scanner has deleted part of
the actual background of the image. As a result, the number of pixels available to
perform the estimation may be drastically reduced. The proposed method presents a
way to test if the number of remaining background pixels is large enough to perform
the estimation.

Finally, we want to recall that the SLV distribution model here presented may be
used for further purposes, not only as a way to check a noise estimation technique.
Following, we propose some possible applications: (1) Alternative noise estimation
algorithms may be developed by fitting a bimodal Gamma PDF to the real data
SLV histogram. Using least squares or a maximum likelihood algorithm, as done in
[37, 84, 47], σn-related parameters may be estimated from real data, and from them
the variance of noise can be derived. (2) Another application would deal with inho-
mogeneities in the image and non-stationarity of signals. They both have an impact
over the statistical model and consequently they affect to the shape and position of
the SLV histogram. A method to detect and characterize such homogeneities may
be based on how the real SLV distribution differs from the theoretical one. (3) As
the position of the maxima is related to the variance of noise, consistency of the data
after some noise reducing procedure may be checked. (4) The position of the signal
maximum for the high SNR assumption will be always placed at σ2

n, regardless of
being Rician or non–central Chi data, while the position of the background maxi-
mum will be related to the number of coils. The underlying statistical model and the
number of coils in the acquisition may be inferred if necessary from a comparison
between these maxima positions.



About the background distribution in MR data: a local variance study 181

6 Appendices

6.1 About the Sample Local Variance

Let Xi, i = {1, · · · , N} be a set of random variables independent and identically
distributed, following a known distribution with moments µk. The (biased) SLV is
defined as

V̂ar(Xi) =
1

N

N∑

i=1

(Xi)
2 −

(
1

N

N∑

i=1

Xi

)2

. (23)

Note that it is necessary to multiply eq. (23) by N
N−1 to make it unbiased. If we

define the variable V = V̂ar(Xi), the mean and variance of such a distribution are
derived as follows:

E{V } =

(
1− 1

N

)(
µ2 − µ2

1

)
(24)

E{V 2} =
1

N3
[(N2 − 2N + 1)µ4 + (N3 − 3N2 + 5N − 3)µ2

2 + (−2N3 + 12N2 − 22N + 12)µ2µ
2
1

+(N3 − 6N2 + 11N − 6)µ4
1 + (−4N2 + 6N − 4)µ3µ1] (25)

Var(V ) =
1

N3

[
(−4N2 + 8N − 4)µ3µ1 + (8N2 − 20N + 12)µ2µ

2
1 + (−N2 + 4N − 3)µ2

2

+(N2 − 2N + 1)µ4 + (−4N2 + 10N − 6)µ4
1

]
(26)

Multiply the mean by N
N−1 and the variance by

(
N
N−1

)2

for the unbiased case.

6.2 About the moments of the distributions

For the calculation of the mean and variance of the sample local mean, the first four
moments of the related distributions are needed. For the Rayleigh distribution:

µ1 =

√
π

2
σ µ2 = 2σ2

µ3 = 3

√
π

2
σ3 µ4 = 8σ4

For the Rician distribution

µ1 =

√
π

2
L1/2

(
− A2

2σ2

)
σ µ2 = A2 + 2σ2

µ3 = 3

√
π

2
L3/2

(
− A2

2σ2

)
σ3 µ4 = A4 + 8σ2A2 + 8σ4
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where Lν(x) is the Laguerre polynomial of order µ-th. A series expansion of these
Laguerre polynomials may be considered considered, assumingN large andA2 >>

σ2, which actually is the high SNR assumption. For x = A2

2σ2 the polynomials for
ν = 1/2 and ν = 3/2 are

L1/2(−x) =
2
√
x√
π

+
1

2
√
π
√
x

+
1

16
√
πx3/2

+O
(
x−5/2

)

L3/2(−x) =
4x3/2

3
√
π

+
3
√
x√
π

+
3

8
√
π
√
x

+
1

32
√
πx3/2

+O
(
x−5/2

)
.

The moments for the central Chi distribution are

µ1 =
√

2
Γ (L+ 1/2)

Γ (L)
σ µ2 = 2Lσ2

µ3 = 3
√

2
Γ (L+ 3/2)

Γ (L)
σ3 µ4 = 4L(L+ 1)σ4

and for the non–central Chi:

µ1 =
√

2
Γ (L+ 1/2)

Γ (L)
1F1

(
−1

2
, L,−A

2
L

2σ2

)
σ µ2 = A2

L + 2Lσ2

µ3 = 3
√

2
Γ (L+ 3/2)

Γ (L)
1F1

(
−3

2
, L,−A

2
L

2σ2

)
σ3 µ4 = A4

L + 4(L+ 1)A2
Lσ

2 + 4L(L+ 1)σ4

with 1F1 the Kummer confluent hypergeometric function.
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Noise estimators for pMRI





Noise Estimation in Parallel MRI: GRAPPA and
SENSE

Santiago Aja-Fernández, Gonzalo Vegas-Sánchez-Ferrero, Antonio Tristán-Vega∗

Abstract Parallel imaging methods allow to increase the acquisition rate via sub-
sampled acquisitions of the k−space. SENSE and GRAPPA are the most popular
reconstruction methods proposed in order to suppress the artifacts created by this
subsampling. The reconstruction process carried out by both methods yields to a
variance of noise value which is dependent on the position within the final image.
Hence, the traditional noise estimation methods —based on a single noise level
for the whole image— fail. In this paper we propose a novel methodology to esti-
mate the spatial dependent pattern of the variance of noise in SENSE and GRAPPA
reconstructed images. In both cases, some additional information must be known
beforehand: the sensitivity maps of each receiver coil in the SENSE case and the
reconstruction coefficients for GRAPPA.

1 Introduction

Magnetic Resonance Imaging (MRI) is known to be affected by several sources of
quality deterioration, due to limitations in the hardware, scanning times, movement
of patients, or even the motion of molecules in the scanning subject. Among them,
noise is one source of degradation that affects acquisitions. The presence of noise
over the acquired MR signal is a problem that affects not only the visual quality
of the images, but also may interfere with further processing techniques such as
registration or tensor estimation in Diffusion Tensor MRI [157].

Noise has usually been statistically modeled attending to the scanner coil ar-
chitecture. For a single–coil acquisition, the complex spatial MR data is typically
modeled as a complex Gaussian process, where the real and imaginary parts of the

∗ This chapter was previously published as: Santiago Aja-Fernández, Gonzalo Vegas-Sánchez-
Ferrero, Antonio Tristán-Vega, “Noise Estimation in Parallel MRI: GRAPPA and SENSE”, Mag-
netic Resonance Imaging, Volume 32, Issue 3, April 2014, Pages 281290.
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original signal are corrupted with uncorrelated Gaussian noise with zero mean and
equal variance σ2

n. Thus, the magnitude signal is the Rician distributed envelope of
the complex signal [5]. This Rician distribution whose variance is the same for the
whole image is also known as homogeneous Rician distribution or, more accurately,
stationary Rician distribution, and it has been the most used model in literature for
multiple applications [4, 8, 37, 23, 25, 58].

When a multiple–coil MR acquisition system is considered, the Gaussian pro-
cess is repeated for each receiving coil. As a consequence, noise in each coil in
the k–space can be also modeled as a complex stationary Additive White Gaussian
Noise process, with zero mean and equal variance. In that case, the noise in the
complex signal in the x–space for each coil will also be Gaussian. If the k−space is
fully sampled, the composite magnitude signal (CMS, i.e. the final real signal after
reconstruction) is obtained using methods such as the sum-of-squares (SoS) [27].
Assuming the noise components to be identically and independently distributed, the
CMS will follow a non-central chi (nc-χ) distribution [27]. If the correlation be-
tween coils is taken into account, the data does not strictly follow a nc-χ but, for
practical purposes, it can be modeled as such, but taking into account effective pa-
rameters [49, 50].

However, in multiple–coil systems, fully sampling the k−space acquisition is
not the common trend in acquisition. Nowadays, due to time restrictions, most
acquisitions are usually accelerated by using parallel MRI (pMRI) reconstruction
techniques, which allow to increase the acquisition rate via subsampled acquisi-
tions of the k−space. This acceleration goes together with an artifact known as
aliasing. Many reconstruction methods have been proposed in order to suppress the
aliasing created by this subsampling, being SENSE (Sensitivity Encoding for Fast
MRI) [32] and GRAPPA (Generalized Autocalibrating Partially Parallel Acquisi-
tion) [33] dominant among them. From a statistical point of view, both reconstruc-
tion methods will affect the stationarity of the noise in the reconstructed data, i.e.
the spatial distribution of the noise across the image. As a result, if SENSE is used,
the magnitude signal may be considered Rician distributed [46, 43] but the value
of the statistical parameters and, in particular, the variance of noise σ2

n, will vary
for different image locations, i.e. it becomes x-dependent. Similarly, if GRAPPA is
used, the CMS may be approximated by a non-stationary nc-χ distribution [42, 43]
with effective parameters.

Noise estimators proposed in literature are based on the assumption of a single
σ2
n value for all the pixels in the image, either assuming a Rician model[7, 81, 37,

8, 47, 84] or a nc-χ [27, 47, 48, 49]. Accordingly, those methods do not apply when
dealing with pMRI and non-stationary noise. Noise estimators must therefore be
reformulated in order to cope with these new image modalities.

In this paper we propose different methodologies to estimate the spatially dis-
tributed variance of noise σ2

n from the magnitude signal when SENSE or GRAPPA
are used as pMRI technique.
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2 Noise statistical models in pMRI

As previously stated, most noise estimation methods in literature rely on the as-
sumption of a single value of σ2

n for every pixel within the image. However, this is
no longer the case when pMRI protocols are considered.

In multiple coil systems, the acquisition rate may be increased by subsampling
the k−space data [30, 31], while reducing phase distortions when strong magnetic
field gradients are present. The immediate effect of the k−space subsampling is the
appearance of aliased replicas in the image domain retrieved at each coil. In order
to suppress or correct this aliasing, pMRI combines the redundant information from
several coils to reconstruct a single non-aliased image domain.

The commonly used (stationary) Rician and nc-χmodels do not necessarily hold
in this case. Depending on the way the information from each coil is combined, the
statistics of the image will follow different distributions. It is therefore necessary to
study the behavior of the data for a particular reconstruction method. We will focus
on two of the most popular methods, SENSE [32] and GRAPPA [33], in their most
basic formulation.

In the following sections we will assume an L-coil configuration, being L the
number of coils in the system. sSl (k) is the subsampled signal at the l-th coil of
the k−space (l = 1, · · · , L), SSl (x) is the subsampled signal in the image domain,
i.e., the x-space, and r is the subsampling rate. The k-space data at each coil can be
accurately described by an Additive White Gaussian Noise (AWGN) process, with
zero mean and variance σ2

K :

sSl (k) = al(k) + nl(k;σ2
Kl

), l = 1, · · · , L (1)

with al(k) the noise-free signal and nl(k;σ2
Kl

) = nlr (k;σ2
Kl

) + jnli(k;σ2
Kl

) the
AWGN process, which is initially assumed stationary so that σ2

Kl
does not depend

on k. The complex x-space is obtained as the inverse Discrete Fourier Transform
(iDFT) of sSl (k) for each slice or volume, so the noise in the complex x-space is
still Gaussian [43]:

SSl (x) = Al(x) +Nl(x;σ2
l ), l = 1, · · · , L

where Nl(x;σ2
l ) = Nlr (x;σ2

l ) + jNli(x;σ2
l ) is also a complex AWGN process

(note we are assuming that there are not any spatial correlations) with zero mean
and covariance matrix:

Σ =




σ2
1 σ12 · · · σ1L

σ21 σ2
2 · · · σ2L

...
...

. . .
...

σL1 σL2 · · · σ2
L


 . (2)

The relation between the noise variances in the k and x-domains is given by the
number of points used for the iDFT:
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Noise relations
k−space Parameters x-space Relation

Fully sam-
pled,
σ2
Kl

k-size: |Ω|

σ2
l =
1
|Ω|σ

2
Kl

,
x-size: |Ω|

Subsampled r,
σ2
Kl

k-size: |Ω|/r

σ2
l =
r
|Ω|σ

2
Kl

,
x-size: |Ω|/r
(SENSE)

Subsampled r,
σ2
Kl

k-size: |Ω|
(zero padded)

σ2
l =
1
|Ω|·rσ

2
Kl

,
x-size: |Ω|
(GRAPPA)

Table 1 Relations between the variance of noise in complex MR data for each coil in the k−space
and the image domain.

σ2
l =

r

|Ω|σ
2
Kl
.

with |Ω| the final number of pixels in the field of view (FOV). Note that the final
noise power is greater than in the fully sampled case due to the reduced k−space
averaging, as it will be the case with SENSE (see below). On the contrary, the iDFT
may be computed after zero-padding the missing (not sampled) k−space lines, and
then we have [42]:

σ2
l =

1

|Ω| · rσ
2
Kl
.

In the latter case the noise power is reduced with respect to the fully sampled case,
since we average exactly the same number of samples but only 1 of each r of them
contributes a noise sample (this will also be the case with GRAPPA). Finally, note
that although the level of noise is smaller in GRAPPA due to the zero padding, the
SNR does not increase, since the zero padding produces also a reduction of the level
of the signal.

Relations between the variance of noise in complex x-space and k−space for
each coil is summarized in Table 1.
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2.1 Statistical Noise Model in SENSE Reconstructed Images

Prior to the definition of the estimators, the statistical noise model in SENSE must
be properly defined. Many studies have been made about this topic from a SNR or a
g-factor (noise amplification) point of view [32, 43, 52]. Since this paper is focused
on the σ2

n value estimation rather than a SNR level, an equivalent reformulation
must be done, more coherent with the signal and noise analysis usually assumed for
noise estimation.

In multiple coil scanners, the signal acquired in each coil, l = 1, 2, · · · , L, can
be modeled in the k−space by the following equation [30, 158]:

sl(k) =

∫

V

Cl(x)S0(x)ej2πk·xdx,

where S0(x) is the excited spin density function throughout the volume V (it is
sometime denoted by ρ(x), and it can be seen as an original image weighted by the
spatial sensitivity of coil l-th, Cl(x). In the x-space this is equivalent to [30, 34]:

Sl(x) = Cl(x)S0(x), l = 1, · · · , L. (3)

An accelerated pMRI acquisition with a factor r will reduce the matrix size of the
image at every coil. The signal in one pixel at location (x, y) of l-th coil can be now
written as [32, 34]:

Sl(x, y) = Cl(x, y1)S0(x, y1) + · · ·+ Cl(x, yr)S0(x, yr). (4)

Let us call SSl (x, y) to the subsampled signal at coil l-th and SR(x, y) to the final
reconstructed image. Note that the latter can be seen as an estimator of the original
image SR(x, y) = Ŝ0(x, y) that can be obtained from eq. (4)

SSl (x, y) = Cl(x, y1)Ŝ0(x, y1) + · · ·+ Cl(x, yr)Ŝ0(x, yr)

= Cl(x, y1)SR(x, y1) + · · ·+ Cl(x, yr)S
R(x, yr) l = 1, · · · , L

SR(x, y) can be easily derived from this relation. For instance, for r = 2 for pixel
(x, y), SR(x, y) becomes [32, 30, 34]

[
SR1
SR2

]
=
[
W1 W2

]
×
[
SS1 · · · SSL

]
, (5)

where SRi stands for each of the r reconstructed pixels. In matrix form for each
pixel and an arbitrary r

SRi = Wi × SS i = 1, · · · , r, (6)

with W = [W1, · · ·Wr] a reconstruction matrix created from the sensitivity maps
at each coil. These maps, C = [C1, · · · ,CL] are estimated through calibration
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right before each acquisition session. Once they are known, the matrix W reduces
to a least-squares solver for the overdetermined problem C(x, y) × SR(x, y) '
SS(x, y) [32, 34]:

W(x, y) = (C∗(x, y)C(x, y))−1C∗(x, y). (7)

The correlation between coils may be incorporated in the reconstruction as a pre-
whitening matrix for the measurements, and W(x, y) becomes then a weighted least
squares solver with correlation matrix Σ:

W(x, y) = (C∗(x, y)Σ−1C(x, y))−1C∗(x, y)Σ−1.

The SNR of the fully sampled image and the image reconstructed with SENSE are
related by the so-called g-factor, g [52, 34]:

SNRSENSE =
SNRfull√
r · g (8)

However, in our problem we are more interested on the actual noise model un-
derlying the SENSE reconstruction and on the final variance of noise. The final
signal SRi is obtained as a linear combination of SSl , where the noise is Gaussian
distributed. Thus, the resulting signal is also Gaussian, with variance:

σ2
i = W∗

iΣWi. (9)

Since Wi is position-dependent, i.e. Wi = Wi(x, y), so will be the variance of
noise, σ2

i (x, y). For further reference, when the whole image is taken into account,
let us denote the variance of noise for each pixel in the reconstructed data by σ2

R(x).
All in all, noise in the final reconstructed signal SR(x, y) will follow a complex

Gaussian distribution. If the magnitude is considered, i.e. M(x, y) = |SR(x, y)|,
the final magnitude image will follow a Rician distribution [43], just like single-coil
systems.

To sum up: (1) Subsampled multi coil MR data reconstructed with Cartesian
SENSE follow a Rician distribution at each point of the image; (2) The resulting
distribution is non-stationary. This means that the variance of noise will vary from
point to point across the image; (3) The final value of the variance of noise at each
point will only depend on the covariance matrix of the original data (prior to recon-
struction) and on the sensitivity map, and not on the data themselves.

2.2 Noise statistical model in GRAPPA

The GeneRalized Autocalibrated Partially Parallel Acquisitions (GRAPPA) [33] re-
construction strategy estimates the full k−space in each coil from a sub–sampled
k−space acquisition. The reconstructed lines are estimated through a linear com-
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bination of the existing samples. Weighted data in a neighborhood η(k) around the
estimated pixel from several coils is used for such an estimation. While the sampled
data sSl (k) remain the same, the reconstructed lines sRl (k) are estimated through a
linear combination of the existing samples. Weighted data in a neighborhood η(k)
around the estimated pixel from several coils is used for such an estimation:

sRl (k) =

L∑

m=1

∑

c∈η(k)

sSm(k− c)ωm(l, c), (10)

with sl(k) the complex signal from coil l at point k and ωm(l,k) the complex
reconstruction coefficients for coil l. These coefficients are determined from the
low-frequency coordinates of k–space, termed the Auto Calibration Signal (ACS)
lines, which are sampled at the Nyquist rate (i.e. unaccelerated). Breuer et al. [51]
pointed out that eq. (10) can be rewritten using the convolution operator:

sRl (k) =

L∑

m=1

sSm(k) ~ wm(l,k), (11)

where wm(l,k) is a convolution kernel that can be easily derived from the GRAPPA
weight set ωm(l,k). Since a (circular) convolution in the k–space is equivalent to a
product into the x-space, we can write:

SRl (x) = |Ω|
L∑

m=1

SSm(x)×Wm(l,x),

with Wm(l,x) the GRAPPA reconstruction coefficients in the x-space and |Ω| the
size of the image in each coil. The CMS can be obtained using the SoS of the signal
in each coil:

ML(x) =

√√√√
L∑

l=1

|SRl (x)|2. (12)

In [42] authors pointed out that the resultant distribution of the CMS in eq. (3) is
not strictly a nc-χ, but its behavior will be very similar and could be modeled as
such with a small approximation error. However, the reconstruction method will
highly increase the correlations between the reconstructed signals in each coil, what
translates into a decrease of the number of Degrees of Freedom of the distribution.
As a consequence, the final distribution will show a (reduced) effective number of
coils Leff and an (increased) effective variance of noise σ2

eff:

Leff(x) =
|A|2 tr

(
C2
X

)
+
(
tr
(
C2
X

))2

A∗C2
XA + ||C2

X ||2F
, (13)

σ2
eff(x) =

tr
(
C2
X

)

Leff
, (14)
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where C2
X(x) = WΣW∗ is the covariance matrix of the interpolated data at each

spatial location, A(x) = [A1, · · · , AL]T is the noise-free reconstructed signal, ||.||F
is the Frobenious norm, Σ is the covariance matrix of the original data and W(x)
is the GRAPPA interpolation matrix for each (x):

W(x) =



W1(1,x) · · · W1(L,x)

...
. . .

...
WL(1,x) · · · WL(L,x)




Although the nc-χ model is feasible for GRAPPA, the resulting distribution is non-
stationary since the effective parameters are spatially dependent.

2.3 Practical simplifications over the GRAPPA model

For practical purposes, in order to make the noise estimation feasible, some simpli-
fications can be made over eq. (13) and eq. (14). We will simplify the problem by
assuming that the variance of noise is the same for every coil, σ2

l = σ2
n, and that the

signal is also the same Ai = Aj for all i, j. The covariance matrix can therefore be
written as:

Σ = σ2
n ·




1 ρ12 · · · ρ1L

ρ21 1 · · · ρ2L

...
...

. . .
...

ρL1 ρL2 · · · 1


 . (15)

Accordingly, matrix C2
X becomes

C2
X(x) = σ2

n ·W ×




1 ρ12 · · · ρ1L

ρ21 1 · · · ρ2L

...
...

. . .
...

ρL1 ρL2 · · · 1


×W∗ = σ2

n ·Θ(x). (16)

The effective values may be now simplified to:

Leff(x) =
SNR2 L tr (Θ) + (tr (Θ))

2

SNR2||Θ||1 + ||Θ||2F
, (17)

σ2
eff(x) = σ2

n

SNR2||Θ||1 + ||Θ||2F
SNR2 L+ tr (Θ)

, (18)

with SNR2(x) =
A2
T (x)
Lσ2

n
. For these equations, two extreme cases can be considered:

1. In the background, where no signal is present and hence SNR=0, the effective
values are:
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Leff,B =
(tr (Θ))

2

||Θ||2F
(19)

σ2
eff,S = σ2

n

||Θ||2F
tr (Θ)

. (20)

2. For high SNR areas, say SNR→∞:

Leff,S = L · tr (Θ)

||Θ||1
(21)

σ2
eff,B = σ2

n

||Θ||1
L

. (22)

These two cases give respectively the lower and upper bounds of σ2
eff(x) within the

image (vice-versa for Leff). Using the simplified version of the effective variance of
noise in eq. (22) we can write:

σ2
eff(x) = φn(x) · σ2

eff,B + (1− φn(x)) · σ2
eff,S (23)

with

φn(x) =
tr (Θ(x))

L SNR2(x) + tr (Θ(x))
. (24)

Note that φn(x) becomes 1 in the background (when SNR→ 0) and becomes 0 in
high SNR areas (when SNR→∞).

The simplified model here presented is far from the standard stationary nc-χ
generally used, and clearly very far from the stationary Rician model. If we consider
results in eq. (20) and (22) we can see that the variance of noise in the background
and in the signal areas will be different. If the estimation of noise is done using only
the background (as it has been traditionally done) and no corrections are done, there
will be a bias when used over the signal areas.

3 Noise estimation

3.1 Noise Estimation in SENSE

In the background of a SENSE MR image, where the SNR is zero, the Rician PDF
simplifies to a (non-stationary) Rayleigh distribution, whose second order moment
is defined as

E{M2(x)} = 2 · σ2
R(x). (25)

Since σ2
R(x) is x-dependent, E{M2(x)} will also show a different value for each

x position. Let us assume that each coil in the x-space is initially corrupted with
uncorrelated Gaussian noise with the same variance σ2

n and there is a correlation
between coils ρ so that matrix Σ becomes
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Σ = σ2
n




1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1


 = σ2

n (I + ρ[1− I]) .

with I the L× L identity matrix and 1 a L× L matrix of 1’s. For each x value, we
define the global map

GWi = W∗
i (I + ρ[1− I]) Wi, i = 1, · · · , r

Global map GW (x) can be easily infered from the GWi
values. Note that GW (x) is

strongly related to the g-factor [52]. Eq. (25) then becomes

E{M2(x)} = 2 σ2
n GW (x) (26)

and

σ2
n =

E{M2(x)}
2 GW (x)

(27)

By using this regularization, we can assure a single σ2
n value for all the points in the

image. Following the noise estimation philosophy in [8, 47], we can now define a
noise estimator based on the local sample estimation of the second order moment:

〈M2(x)〉x =
1

|η(x)|
∑

p∈η(x)

M2(p),

with η(x) a neighborhood centered in x. 〈M2(x)〉x is known to follow a Gamma
distribution [47] whose mode is 2σ2

n(|η(x)| − 1)/|η(x)|. Then

mode
{ 〈M2

L〉x
GW (x)

}
= 2σ2

n

|η(x)| − 1

|η(x)| ≈ 2σ2
n

when |η(x)| >> 1. The estimator is then defined as

σ̂2
n =

1

2
mode

{ 〈M2
L(x)〉x
GW (x)

}
(28)

and consequently the noise in each pixel is estimated as

σ̂2
R(x) =

1

2
mode

{ 〈M2
L(x)〉x
GW (x)

}
GW (x) (29)

This estimator is only valid over the background pixels. However, as shown in
[8, 47], no segmentation of these pixels is needed: the use of the mode allows us
to work with the whole image. On the other hand, to carry out the estimation, the
sensitivity map of each coil and the correlation between coils must be known be-
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forehand. These parameters are needed for the SENSE encoding, and thus, they can
be easily obtained.

3.2 Noise estimation in GRAPPA

The background area of a GRAPPA reconstructed image may be approximated by
a c-χ distribution, whose second order moment is defined as

E{M2
L} = 2σ2

nL. (30)

Effective parameters Leff(x) and σ2
eff(x) must me taken into account. Since both

are x-dependent, E{M2
L} will also show a different value for each x position:

E{M2
L}(x) = 2 σ2

eff(x) Leff(x)

= 2 tr
(
C2
X(x)

)

and assuming the simplifications proposed in section 2.3:

E{M2
L}(x) = 2 σ2

n tr (Θ(x)) .

In order to estimate a possible value of σ2
n matrices W(x) (the GRAPPA weights)

must be known before hand. In addition, some assumption must be also made over
covariance matrix Σ. One possible assumption is the same correlation between all
coils, as done in SENSE:

Σ = σ2
n




1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1


 = σ2

n (I + ρ[1− I]) .

or, in a much simplified case, no correlations between coils, Σ = σ2
n I. In any case,

from eq. (30) we can always derive

σ2
n =

E{M2
L}(x)

2 tr (Θ(x))
(31)

Following the same noise estimation philosophy proposed for SENSE, we can de-
fine a noise estimator based on the local sample estimation of the second order
moment:

σ̂2
n =

1

2
mode

{ 〈M2
L(x)〉x

tr (Θ(x))

}
(32)
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This estimator is only valid over the background pixels. However, as showed in
[8, 47], no segmentation of these pixels is needed. On the other hand, to carry out
the estimation, the GRAPPA interpolation weights must be known beforehand.

3.3 Estimation of effective values in GRAPPA

Although many methods and applications based on the nc-χ use only the σ2
n value,

there are other situations in which the effective value of noise is needed. Note that
this effective value will now be x-dependent.

Assuming that we know the GRAPPA weights beforehand, we can use the es-
timation σ̂2

n in eq. (32) to estimate σ̂2
n,B and σ̂2

n,S , using eq. (20) and eq. (22) re-
spectively. These two values give the lower and upper bounds of the actual σ2

eff(x)
across the image. Using the simplified version of the effective variance of noise in
eq. (23):

σ̂2
eff(x) = φ̂n(x) · σ̂2

eff,B + (1− φ̂n(x)) · σ̂2
eff,S (33)

A rough estimation of φn(x) can be done using the sample second order moment
(although more complex estimation could also be considered). Since

E{M2
L}(x) = A2

T + 2 σ2
n tr (Θ(x)) .

we can write

φn =
tr (Θ)

A2
T

σ2
n

+ tr (Θ)

=
tr (Θ) σ2

n

A2
T + tr (Θ) σ2

n

Therefore, a simple estimation would be

φ̂n(x) =
tr (Θ) σ̂2

n

〈M2〉 − tr (Θ) σ̂2
n

. (34)

Finally, the estimated effective noise variance becomes:

σ̂2
eff(x) = σ̂2

n

[
tr (Θ) σ̂2

n

〈M2〉 − tr (Θ) σ̂2
n

· ||Θ||1
L

+

(
1− tr (Θ) σ̂2

n

〈M2〉 − tr (Θ) σ̂2
n

)
· ||Θ||

2
F

tr (Θ)

]
.

(35)
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Fig. 1 Sensitivity Maps used for the experiments. Top: synthetic sensitivity map. Bottom: Map
estimated from real acquisition.

Fig. 2 Maps of σ2
R(x) in the final image: (a-c-e): Theoretical values. (b-d-f): Estimated from

samples. (a-b) Synthetic Sensitivity Map with no correlation. (c-d) Synthetic Sensitivity Map with
correlation between coils. (e-f) Real sensitivity map with correlation between coils (log scale).

4 Experiments and Results

For the sake of validation of the noise estimators proposed, some experiments are
carried out. We will focus first in SENSE and later in GRAPPA.

4.1 Noise estimation in SENSE

We will first test the variation of parameter σ2
R(x) across the image in SENSE. To

that end, we work with two sensitivity maps belonging to 8-coil systems as shown
in Fig. 1: one synthetic sensitivity map (top) and a real map (bottom), estimated
from a T1 acquisition done in a GE Signa 1.5T EXCITE, FSE pulse sequence, 8
coils, TR=500msec, TE=13.8msec, 256× 256 and FOV: 20cm×20cm. For the sake
of simplicity we assume a normalized variance at each coil σ2

l = 1 since it will not
affect the experiment. We will simulate two different configurations, first, assuming
that there is no initial correlation between coils, and second, assuming a correlation
coefficient of ρ = 0.1. From the data, and using the theoretical expression in eq. (9)
we calculate the variance of noise for each pixel in the final image. In order to
test the theoretical distributions, 5000 samples of 8 complex 256 × 256 Gaussian
images with zero mean and covariance matrix Σ are generated. The k-space of the
data is subsampled by a 2x factor and reconstructed using SENSE and the synthetic
sensitivity field. We estimate the variance of noise in each point using the second
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order moment of the Rayleigh distribution [47]:

σ2
R(x) =

1

2
E{M2(x)}.

We estimate the E{M2(x)} along the 5000 samples.
Visual results are depicted in Fig 2. For the synthetic maps, when no correla-

tions are considered, the final variance of noise will not depend on the position x.
Therefore, in this particular case σ2

R(x) = σ2
R. The estimated values in Fig 2-(b)

show a noise pattern that slightly varies around the real value (note the small range
of variation). In this very particular case, the noise can be considered to be spa-
tially stationary, and the final image (leaving the correlation between pixels aside)
is equivalent to one obtained from a single-coil scanner.

When correlations are taken into account, even using the same synthetic sensi-
tivity map, results differ. In Fig. 2-(c), the theoretical value shows that the standard
deviation of noise of the reconstructed data is not the same for every pixel, i.e., the
noise is no longer spatial-stationary. The center of the image shows a larger value
that decreases going north and south. So, in this more realistic case, the σ2

R(x) will
depend on x, which can have serious implications for future processing, such as
model based filtering techniques. The estimated value in Fig. 2-(d) shows exactly
the same non-homogeneous pattern across the image. In the last experiment, Fig. 2-
(e) and Fig. 2-(f), a real sensitivity map is used, and correlation between coils is also
assumed. Again, the noise is non-stationary. To increase the dynamic range of the
images, the logarithm has been used to show the data.

Secondly, we will validate the noise estimation capability of the proposed
method by carrying out an experiment with a 2D synthetic slice from a BrainWeb
MR volume [53], with intensity values in [0− 255].The average intensity value for
the White Matter is 158, for the Gray Matter is 105, for the cerebrospinal fluid 36
and 0 for the background. An 8-coil system is simulated using the artificial sensitiv-
ity in Fig. 1. Image in each coil is corrupted with additive circular complex Gaussian
noise with std σn ranging in [5− 40] and ρ = 0.1 between all coils. The k-space is
uniformly subsampled by a factor of 2 and reconstructed using SENSE. Note that
the variance of noise of the subsampled images in each coil is amplified by a factor
r [32]: (σ2

n)sub = r × σ2
n.

Results for the experiment are shown in Fig 3-(a): the average of the 100 experi-
ments divided by the actual value of σ2

n is depicted. Accordingly, the closer to 1, the
better the estimation. From the figure it can be seen that the estimation is very accu-
rate for all the considered values of σn. The estimation is similar to the one carried
out for single coil data in [8]. However, the goodness of the estimation lies in the
fact that the sensitivity maps are available. We repeat the estimation assuming that
the maps are not available, and considering a single σ2

R value for the whole image:

σ̂2
R =

1

2
mode

{
〈M2

L(x)〉x
}

(36)
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Fig. 3 Estimation of the variance of noise from SENSE. The average of 100 experiments is con-
sidered.

Fig. 4 Slice from a brain T1 acquisition done in a GE Signa 1.5T EXCITE with 8 coils.

We define the ratio σ̂2
R/σ

2
R(x) and we calculate the average, the minimum and

maximum values across the image, and the average along 100 samples. Results are
depicted in Fig 3-(b). The estimated value presents a constant bias of around 5% for
all values. The estimated value will be in a range from 85% to 100% of the original
value. Hence, if GW (x) is unknown, estimating an individual value of σ2

n will only
be acceptable for certain applications, whenever they are robust enough to cope with
a bit deal of bias and a higher deal of uncertainty in this parameter.

Finally, an experiment is carried out with data from a real acquisition, see Fig. 4,
with sensitivity map in Fig. 1-bottom. First, as a golden standard, parameter σn is
estimated from the Gaussian complex data:

Real component σ̂n = 4.1709

Imag. component σ̂n = 4.0845

Then a subsampled acquisition is simulated and reconstructed with SENSE. σn
is first estimated using eq. (32) and then, assuming the map GW (x) is unknown,
using eq. (36). Results are as follows:

Magnitude (GW (x) known) σ̂n/
√
r = 4.1728

Magnitude (GW (x) unknown) σ̂n/
√
r = 4.8404

Note that the value estimated using the proposed method is totally consistent with
the estimation done over the original complex Gaussian data. The blind estimation
method, on the other hand, overestimates the noise level. This is caused because in
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eq. (29) the map given by GW (x) is basically a normalization. The lack of knowl-
edge of this parameter displaces the mode of the distribution from its actual value,
hence the mismatch. However, for some applications in which a great accuracy is
not needed, there could still be a valid value that gives a rough approximation to the
variance of noise.

4.2 Noise estimation in GRAPPA

For the sake of validation, several experiments are considered. First, synthetic ex-
periments were carried out using the same 2D synthetic slice from a BrainWeb MR
volume used for SENSE. Image in each coil is again corrupted with Gaussian noise
with std σn ranging in [5− 40] and ρ = 0. The k-space is uniformly subsampled by
a factor of 2, keeping 32 ACS lines. The CMS is reconstructed using GRAPPA and
SoS. The sample local moments have been calculated using 7 × 7 neighborhoods.
Two different cases are considered in the simulation, 4 and 8 coils.
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Fig. 5 Results of σn estimation using the proposed method; 100 experiments are considered for
each sigma value. (a) Mean of the estimated value divided by the actual value. (b) Standard devia-
tion of the estimated values.

Results for the experiment are shown in Fig. 5: in Fig 5-(a), the mean of the 100
experiments divided by the actual value of σn is depicted. Accordingly, the closer to
1, the better the estimation; in Fig 5-(b), the standard deviation of the experiments
divided by the actual value is shown; the lower the value, the better the estimation.

From the results it can be seen that the estimation is very accurate, although a
small bias appears for low values of σn. This bias is surely motivated by a mismatch
between the GRAPPA reconstructed image and the nc-χ model: according to [42]
the error of approximating the CMS by a nc-χ is larger for very low σn values. All
in all, the proposed method shows a very good average behavior –the values are in a
small range between 0.97 and 1–, with a small biased mean and a very low variance,
which assures a consistent estimation.
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Fig. 6 Effective standard deviation of noise: (a) Original σeff(x), derivated from the GRAPPA
weights and eq. (14); (b) Estimated σ̂eff(x) from eq. (35); (c) Estimation of effective std of noise
for SNR=0, σ̂eff,B(x); (d) Estimation of effective std of noise for high SNR, σ̂eff,S(x).

Fig. 7 Estimation of correction factor φ̂n(x) from eq (34).

Fig. 8 Slice of an 8-coil 2D acquisition of the phantom used for the experiments.

For the sake of illustration, the map of the effective values of noise is also calcu-
lated for one single experiment with σn = 10. For that experiment, the theoretical
value of σ2

eff(x) is calculated using eq. (14). From the expression in eq. (35), us-

ing the estimated noise σ̂2
n and the GRAPPA weights coded in Θ, the variance of

noise for the two extreme cases (SNR=0 and high SNR) are estimated. Using the
correction factor φ̂n(x), a global value for σ̂2

eff(x) is obtained.
Results are depicted in Fig. 6-(a) (σeff(x)); Fig. 6-(b) (σ̂eff(x)); Fig. 6-(c)

σ̂eff,B(x); Fig. 6-(d) σ̂eff,S(x). The correction factor φ̂n(x) is depicted in Fig. 7.
From the illustrations it is easy to see that the variance of noise has a high vari-

ation itself across the image. σeff(x) ranges from 10 to 45. Even inside the same
tissue, there is a huge variation (from 25 to 45). There is, also, a high mismatch
between the head and the background areas. Some interesting conclusions can be
raised from this: (1) The assumption of a single σ2

n value for the whole volume does
not hold in GRAPPA. Assuming this single value will clearly bias any further pro-
cessing; (2) In this example, the noise values in the background are much smaller
than those inside the tissue. If the background is used to estimate the noise, and no
correction is applied, there can be a huge mismatch between the real noise and the
estimated value.
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Fig. 9 Values of map tr(Θ)(x) from the GRAPPA reconstruction coefficients of the second exper-
iment.

For the second experiment, real acquisitions are considered. 100 repetitions of
the same slice of a phantom, scanned in an 8-channel head coil on a GE Signa 1.5T
EXCITE 12m4 scanner with FGRE Pulse Sequence to generate low SNR, see Fig. 3.
Matrix size= 128×128, TR/TE=8.6/3.38 ms, FOV 21x21cm, slice thickness = 1mm.
Noise variance σ2

n is initially estimated using the variance of the real part of every
coil of every sample, where the noise is known to be additive Gaussian [108]. This
value σ2

0 is taken as Golden Standard. Then, all the 100 samples are 2× subsam-
pled. The GRAPPA reconstruction coefficients are derived from one sample, using
32 ACS lines, and used for interpolation in all samples. The CMS is obtained by
SoS. Noise is estimated over each CMS using eq. (32). For the sake of illustration,
values for tr(Θ)(x) derived from the GRAPPA coefficients are depicted in Fig. 9.
Estimation results are as follows:

σ0 mean{σ̂n} mean{σ̂n}/σ0 std{σ̂n}/σ0

0.0428 0.0424 0.9905 0.0113

Results obtained estimating the noise with the proposed method is totally consistent
with the value obtained over the complex Gaussian images without subsamplig.
There is a very small bias in the estimation and the method also shows a very small
variance, as also seen in the synthetic experiments. The map of tr(Θ)(x) depicted
in Fig. 9 shows that, in this real case, there is also a great variation of the noise
parameter across the image.

Finally, for the sake of comparison with SENSE estimation, a new experiment is
carried out with the data from the real acquisition in Fig. 4, as a golden standard for
parameter σn the estimation from the Gaussian complex already done for SENSE
(σ̂n = 4.1709 for the real component.) The complex data is subsampled with r = 2.
The k-space is reconstructed using GRAPPA and 32 ACS lines and the CMS is
obtained by SoS. Noise is estimated over the CMS using eq. (32). Two different
estimations have been done: (1) using the GRAPPA coeffficients; (2) assiming the
coefficients unknown. In the last case, matrix Θ(x) is replaced by a 8 × 8 identity
matrix.

Results are as follows:

Magnitude (GRAPPA coefficients known) σ̂n ×
√
r = 4.1097

Magnitude (GRAPPA coefficients unknown) σ̂n ×
√
r = 5, 1933
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Again, like in SENSE; the value estimated using the proposed method is consis-
tent with the estimation done over the original complex Gaussian data. The blind
estimation method, on the other hand, overestimates the noise level. Note that there
is a great lack of knowledge of a normalization level, hence the error. However, note
that can still be valid to estimate the order of magnitude of the variance of noise, or
in case a rough estimation is needed.

5 Conclusions

The proper modeling of the statistics of thermal noise in MRI is crucial for many
image processing and computer aided diagnosis tasks. While the stationary Rician
and nc-χ models have been the keystone of statistical signal processing in MR for
years, the stationarity assumption cannot be applied when parallel imaging recon-
struction is considered: the main assumption of a single value of σ2

n to characterize
the whole data set is no longer valid. When pMRI techniques are used, due to the
reconstruction process, the variance of noise becomes x-dependent, with a different
value for each pixel.

To overcome the problems of non-stationarity, we have proposed a novel noise
estimation technique to be used with SENSE and GRAPPA reconstructed data. The
estimation of the spatially variant σ2

n(x) is of paramount importance, since the
knowledge of this parameter will allow us to re-use many of the methods proposed
in literature for stationary models. In most cases it will suffice with changing an
scalar σ2

n value by the spatially dependent σ2
n(x).

The estimation methods proposed have shown to be accurate, robust and easy to
use. However, it also shows some limitations. First, correlation between coils must
be known beforehand, as well as the sensitivity map from each coil (in SENSE) or
the reconstruction weights (in GRAPPA). Finally, some post processing software
in the scanner may add a mask to data, which eliminates part of the background,
drastically reducing the number of points available for noise estimation [107]. The
estimation method selected must be properly adjusted to this problem. Note that if
the background is totally removed, the estimation should be done using methods
that do not rely on the background, but on the signal areas.
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Blind estimation of spatially variant noise in
MRI

Santiago Aja-Fernández, Tomasz Pieciak, Gonzalo Vegas-Sánchez-Ferrero∗

Abstract The reliable estimation of noise characteristics in MRI is a task of great
importance due to the influence of noise features in extensively used post-processing
algorithms. Many methods have been proposed in the literature to retrieve noise fea-
tures from the magnitude signal. However, most of them assume a stationary noise
model, i.e., the features of noise do not vary with the position inside the image. This
assumption does not hold when modern scanning techniques are considered, e.g., in
the case of parallel reconstruction and intensity correction. Therefore, new noise es-
timators must be found to cope with non-stationary noise. Some methods have been
recently proposed in the literature. However, they require multiple acquisitions or
extra information which is usually not available (biophysical models, sensitivity of
coils). In this work we overcome this drawback by proposing a new method that can
accurately estimate the non-stationary parameters of noise from just a single mag-
nitude image. In the derivation, we considered the noise to follow a non-stationary
Rician distribution, since it is the most common model in real acquisitions (e.g.,
SENSE reconstruction), though it can be easily generalized to other models. The
proposed approach makes use of a homomorphic separation of the spatially vari-
ant noise in two terms: a stationary noise term and one low frequency signal that
correspond to the x-dependent variance of noise. The non-stationary variance of
noise is then estimated by a low pass filtering with a Rician bias correction. Results
in real and synthetic experiments evidence the better performance and the lowest
error variance of the proposed methodology when compared to the state-of-the-art
methods.

∗ This chapter was previously published as: Santiago Aja-Fernández, Tomasz Pieciak, Gonzalo
Vegas-Sánchez-Ferrero, “Spatially variant noise estimation in MRI: A homomorphic approach”,
Medical Image Analysis, Volume 20, Feb. 2015, Pages 184197.
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1 Introduction

Noise is known to be one of the most common sources of deterioration of the quality
of Magnetic Resonance Imaging (MRI) data. The principal source of noise in most
MR scans is the subject or object to be imaged, followed by electronics noise during
the acquisition of the signal in the receiver chain. It is produced by the stochastic
motion of free electrons in the RF coil, which is a conductor, and by eddy current
losses in the patient, which are inductively coupled to the RF coil. The presence of
noisy patterns on the acquired MR signal is a problem that affects not only the visual
quality of the images, but also may interfere with further processing techniques
such as registration, fMRI analysis or tensor estimation in Diffusion Tensor MRI
([4, 5, 6, 157, 25]). The accurate modeling of signal and noise statistics in MR data
usually underlies the tools for processing and interpretation within MRI.

The stationary Rician distribution ([5]) has been widely accepted in literature as
a suitable model for noise in MR magnitude images. Many authors have precisely
introduced the Rician statistics in the estimation of diffusion models ([55]), curve
fitting for quantitative perfusion measurements ([56, 58]), hypothesis tests to assess
the activation level in functional MRI ([24]), in a preprocessing step to remove the
bias of the data for the subsequent processing stages ([48]) and denoising techniques
([9, 12, 13]).

The main assumption for single coil Rician acquisitions is that the noise is sta-
tionary, and therefore a single value of σ characterizes the whole data set. However,
this premise will mostly fail when considering modern scanners with multiple-coil
antennae and scanning software to correct artifacts, and to improve the final appear-
ance of the image. Linear operations carried out over the complex Gaussian data
modify the variance of the noise σ2 differently for each position. As a result, the
final magnitude signal will have an x−dependent value of σ, i.e. σ(x), generating
a non-stationary (or non-homogeneous), distribution. For instance, this is the case
of a Sum-of-Squares ([27]) reconstruction of a multiple-coil acquisition, where the
composite magnitude signal can be approximated by a non-stationary non-central χ
(nc-χ) distribution ([49]). It is also the case for accelerated acquisitions with paral-
lel MRI (pMRI) reconstruction techniques. If GRAPPA (Generalized Autocalibrat-
ing Partially Parallel Acquisition, [33]) is used for reconstruction, the final noise
is known to follow a non-stationary nc-χ distribution ([42, 43]), while if SENSE
(Sensitivity Encoding for Fast MRI, [32]) is used, the magnitude signal may be
considered Rician distributed with a spatially variant value of σ(x) ([46, 43, 70]).

Nowadays, SENSE has become practically a de facto standard in most acquisi-
tions. However, many processing techniques still assume the stationary Rician dis-
tribution as a model for the signal and noise, forgetting about the non-stationarity
of the data. This is probably due to the fact that most noise estimators in literature
are based on a single σ2 value for all the pixels in the image, either assuming a
Rician model ([7, 81, 37, 8, 47, 84]) or an nc-χ ([27, 47, 48, 49]). There have also
been some proposals to carry out a rough estimation of non-stationary noise maps.
However, these approaches require extra information beyond the simple magnitude
signal: multiple acquisitions or different signals are required ([67, 68, 69]), a bio-
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physical model must be defined ([69]), or even acquisition information such the
estimated sensitivity of the coils is needed ([70]). This need of extra information
has supposed a drawback in the usage of more complex noise models.

In this paper we propose a new technique that allows the estimation of the spa-
tially variant maps of noise σ(x) from the magnitude signal when only a single
image is available and no additional information is required. The estimator is devel-
oped for the non-stationary Rician case, and it is complemented with the estimators
for Gaussian and Rayleigh cases. The methodology here presented is totally com-
patible with other noise models, such as the non-stationary nc-χ distribution, and
the extension would be straightforward. The initial assumption needed is that the
variability of the map of noise is smaller than the variability of the noise itself, i.e.,
σ(x) is a low frequency signal when compared to the noise, which is a rational as-
sumption in MRI acquisitions. Both sources of variability are separated by using a
homomorphic transformation ([159]). This technique allows us to improve the esti-
mation of the map of noise while it avoids the granularity produced by most local
methods.

2 Background: non-stationary noise in MRI

When dealing with MRI data, before performing any processing that may involve
noise related parameters, it is necessary to identify the specific noise model present
in your data. The probability model of noise in the data depends on the coil con-
figuration of the scanner and on the kind of processing the MR data goes through
before producing the final magnitude image. The purpose of this section is precisely
to provide a general framework of the most usual models of noise in MR data, as
well as the most common procedures that originates these distributions.

Most applications dealing with noise in MRI rely on the assumption of a single
value of the variance of noise σ2 for every pixel within the image, i.e., they assume a
stationary noise model: the features of noise do not change with position. However,
this is not entirely the case in modern acquisition systems, when pMRI protocols and
artifact correction techniques are applied. The linear manipulation of the original
Gaussian data, the combination of different coil information and adaptive processing
change the features of noise differently in every location of the image. However,
due to the kind of processing carried out, most of the times the Rician and nc-χ
assumptions still hold, although the stationarity does not.

In what follows the procedures that lead to non-stationary noise models in MRI
will be put together, and the main proposals in the literature for non-stationary noise
estimation will be reviewed.
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2.1 Noise model for each coil

The first step in modeling the final magnitude image in MRI is to model the noise
distribution in each of the scanner coils and, then, to propagate the model along the
processing pipeline.

Let us assume an L-coil antenna configuration, being L the number of coils in
the system. We denote sl(k) the signal in the k−space acquired by the l-th coil,
which corresponds to a complex signal Sl(x) in the image domain. Signals sl(k)
are considered to be corrupted by Additive White Gaussian Noise (AWGN), with
zero mean and variance σ2

Kl
:

sl(k) = al(k) + nl(k;σ2
Kl

), l = 1, · · · , L (1)

with al(k) the noise-free signal and nl(k;σ2
Kl

) = nlr (k;σ2
Kl

) + j · nli(k;σ2
Kl

) the
AWGN process, which is initially assumed stationary, so that σ2

Kl
does not depend

on k. The complex x−space is obtained as the inverse Discrete Fourier Transform
(iDFT) of sl(k) for each slice or volume, so the noise in the complex x−space is
still Gaussian ([43]):

Sl(x) = Al(x) +Nl(x;σ2
l ), l = 1, · · · , L

where Nl(x;σ2
l ) is also a complex AWGN process (note that we are assuming no

spatial correlations) with zero mean and covariance matrix:

Σ =




σ2
1 σ12 · · · σ1L

σ21 σ2
2 · · · σ2L

...
...

. . .
...

σL1 σL2 · · · σ2
L


 . (2)

The relation between the noise variances in the k− and x−domains is given by the
number of points used for the iDFT:

σ2
l =

1

|Ω|σ
2
Kl
, (3)

with |Ω| the final number of pixels in the field of view (FOV).

2.2 Noise models in pMRI

In order to accelerate the acquisition rate in multiple coil systems, pMRI techniques
are used. This acceleration is achieved by subsampling the k−space data in each
coil ([30, 31]), i.e., not all the frequency lines are acquired. The immediate effect
of this k−space subsampling is the appearance of aliased replicas in the image
domain retrieved at each coil. In order to suppress or correct this aliasing, pMRI
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Noise relations
k−space Parameters x−space Relation

Fully sam-
pled,
σ2
Kl

k−size: |Ω|

σ2
l =
1
|Ω|σ

2
Kl

,
x-size: |Ω|

Subsampled r,
σ2
Kl

k−size: |Ω|/r

σ2
l =
r
|Ω|σ

2
Kl

,
x−size: |Ω|/r

Subsampled r,
σ2
Kl

k−size: |Ω|
(zero padded)

σ2
l =
1
|Ω|·rσ

2
Kl

,
x−size: |Ω|

Table 1 Relations between the variance of noise in complex MR data for each coil in the k−space
and the image domain.

combines the redundant information from several coils to reconstruct a single non-
aliased image domain.

The commonly used stationary Rician and nc-χ models do not necessarily hold
in this case. Depending on the way the information from each coil is combined,
the statistics of the image follows different distributions. It is therefore necessary to
study the behavior of the data for each particular reconstruction method.

Let us call sSl (k) to the subsampled signal at the l-th coil in the k−space and
SSl (x) in the image domain. The relation between the noise variances in the k− and
x−domains in eq. (3) depends on the kind of reconstruction used for the iDFT. If
a SSl (x) is direct iDFT of sSl (k), the relation, assuming an acceleration rate of r,
becomes

σ2
l =

r

|Ω|σ
2
Kl
. (4)

On the contrary, if the iDFT is computed after zero-padding, the missing (not sam-
pled) k−space lines, the relation is:

σ2
l =

1

|Ω| · rσ
2
Kl
. (5)

Relations between the variance of noise in complex x−space and k−space for each
coil are summarized in Table 1.
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Many different methods have been defined to reconstruct the final image from
subsampled versions of the signals in each coil, being SENSE and GRAPPA dom-
inant in commercial scanners. However, new reconstruction methods and modifi-
cations of the existing ones are continuously proposed. From a statistical point of
view, reconstruction methods carry out linear operations over the subsampled sig-
nals SSl (x), in order to obtain a final reconstructed magnitude image, which is the
one of the main causes of the non-stationarity of noise. There are mainly two differ-
ent approaches for signal reconstruction:

1. Reconstruction of a single complex image: The reconstruction process combines
the data of the different coils with some extra information (such as the sensitivity
map of each coil or the covariance matrix) to obtain a single image:

SR(x) = f
(
{SSl (x), l = 1, · · · , L};Θ

)
. (6)

with f(.) a linear reconstruction function (see some specific functions in [32, 34])
and Θ any additional information needed. The linear operations over the Gaus-
sian data generate correlated Gaussian data. However, the reconstruction affects
the stationarity of the noise in the resulting image. Thus, the final signal can
be seen as a reconstructed signal corrupted with Gaussian noise whose variance
depends on the position:

SR(x) = AR(x) +NR(x;σ2
R(x)) (7)

where NR(x;σ2
R(x)) is a non-stationary complex AWGN process. The final

magnitude image is obtained by using the absolute value:

M(x) = |SR(x)| (8)

and therefore it follows a non-stationary Rician distribution, with the parame-
ter σ2

R(x) being spatially variant. This is the case, for instance, of pMRI data
reconstructed with SENSE in its original form.

2. Reconstruction of multiple complex images: The reconstruction process com-
bines the data of the different coils to obtain a reconstructed image per coil:

SRl (x) = fl
(
{SSm(x),m = 1, · · · , L};Θ

)
, with l = 1, · · · , L. (9)

with fl(.) a linear reconstruction function over each coil (see one specific func-
tion in [33]). As in the previous case, the linear operations over the Gaussian
data generate non-stationary Gaussian data in each coil. The final signal in each
coil can be seen as a reconstructed signal corrupted with Gaussian noise whose
variance depends on the position:

SRl (x) = ARl (x) +NRl (x;σ2
Rl(x)), with l = 1, · · · , L. (10)

The probability distribution of the final magnitude image depends on the method
used to merge the information of the multiple reconstructed coils into one single
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image. To avoid any extra information, one of the most common approaches is
the Sum-of-Squares (SoS):

MSoS(x) =

√√√√
L∑

l=1

|SRl (x)|2. (11)

The distribution of the magnitude signal MSoS(x) depends on the relation of
noise with the reconstructed signal in each coil, SRl (x). For a GRAPPA proce-
dure, for instance, it can be approximated by a non-stationary nc-χ distribution
([42]). However, since it is the sum of multiple signals, the Rician distribution
does no longer hold. Due to the bias that the method can introduce over the re-
sulting signal, manufacturers are lately trying to avoid the SoS to obtain M(x).
Even for GRAPPA, some new approaches use a reconstruction similar to the first
case, where data is Rician distributed.
Other common strategy is based on the spatial matched filter approach, which lin-
early combines the complex signals of each coil and produces voxelwise complex
signals ([160]). This is the same methodology used by SENSE, and it requires
extra information of the sensitivity of each coil. One simple way to implement
this filtering is the following:

SRT (x) =

L∑

l=1

SRl (x) · Cl(x), (12)

with Cl(x) an estimation of the sensitivity map in each coil. The complex im-
age SRT (x) now follows a complex Gaussian distribution, similar to the previous
case. The magnitude signal is then obtained:

MT (x) = |SRT (x)|

and therefore it follows a non-stationary Rician distribution, with the parameter
σ2
R(x) being spatially variant.

2.3 Extrapolation to other data processing

Parallel reconstruction methods are not the only source of non-stationarity of the
data. Even when no acceleration is present, certain correction and preprocessing
techniques can make the features of noise spatially variant. A deep study of these
techniques is beyond the scope of this paper. However, as an illustration of other
cases in which the same methodology can be used, two examples are presented:

• Definition of composite magnitude image from multiple coils: even when non
acceleration is considered, if the acquisition is done in multiple coils, complex
signals from each coil have to be merged into one single final image. If the SoS



212 Aja-Fernández et al.

of eq. (3) is used, due to the correlation between coils, the final image can be ap-
proximated by a non-stationary nc-χ distribution with adaptive parameters ([49]).
On the contrary, if the matched filter in eq. (12) is used, the final M(x) follows a
Rician distribution, and the variance of noise may become spatially variable due
to the estimated sensitivity coils.

• Spatial linear processing with space dependent weights: any linear processing
that uses spatial-dependent features over the complex Gaussian data also change
the spatial features of noise. Assume, for instance, an illumination correction in
a single coil signal:

SF (x) = S(x) · C−1(x),

where C(x) is an estimation of the image illumination, related to the coil sensi-
tivity. Note that the final image SF (x) will remain Gaussian, but the variance of
noise is affected by the following spatial correction:

σ2
F (x) = σ2 · (C−1(x))2.

2.4 Non-stationary noise estimation

Although most of the noise estimators in literature cope with the problem of a single
value of σ for the whole image ([7, 81, 37, 8, 47, 84]), there have been some attempts
to estimate non-homogeneous maps of noise, not only in the MRI context. The most
usual approaches are based on wavelet decomposition or on multiple acquisitions

One of the first attempts to estimate spatially variant noise in images is due to
[71]. Authors estimate the spatially variant map of noise in images assuming they
are corrupted by a non-stationary AWGN process. To separate the signal and the
noise, they use a wavelet transform, assuming that the high-high subband is strictly
noise. In [98], authors propose the joint estimation of non-homogeneous noise and
signal in Rician data, using an expectation-maximization (EM) algorithm to find the
maximum likelihood (ML) estimate for the parameters in synthetic aperture radar
images. To carry out the algorithm, multiple samples of the receiving signal are
necessary.

In MRI, [72] proposed a method to estimate spatially variant noise by suppress-
ing the signal component. To that end, the stationary wavelet transform of the mag-
nitude image at the scale s = 1 is calculated and the low-low subband coefficients
are removed. The estimation is done assuming that the remaining signal is only
noise following a Rayleigh distribution. This assumption, however, is not entirely
true, as can be experimentally proved. A similar approach, also based in image re-
moval to get an only noise image is carried out by [100]. They model the variance of
noise as a minimal distance between local neighborhood (patch) of the current pixel
and the remaining patches in the non-local means filtering scheme. The estimate
is corrected for low Signal-to-Noise Ratio (SNR) regions applying the technique
described in [48]. Thus, a SNR iterative estimation is needed.
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The median absolute deviation (MAD) estimator for stationary Rician noise esti-
mation proposed in [78] has been extended by some authors to non-stationary noise
using a local version of the MAD, see for instance [68] and [74], with very simi-
lar approaches, and [67] with a very effective technique that needs information of
multiple diffusion weighted images of the same slice to carry out the estimation. All
these methods also need an estimation of the SNR.

An alternative technique was proposed in [69], based in a Qn estimator followed
by a regularization procedure using coil sensitivity model. Although this method has
been proposed to cope with multiple independent MR scans, in its basic scenario it
can be used to estimate the noise map on a single image.

Other significant methods are the following: [99] proposed a local variance as
a noise level estimator after edges exclusion by means of local mutual information
and k-means segmentation. This method suffers from edges overestimation, thus, a
mathematical morphology filter is applied to suppress this undesirable effect; [102]
calculate the noise map from the receiver coil noise matrix, which, in fact, is not
always available in a clinical routine; [101] proposed a method to assess temporary
random noise in dynamic MR image series, e.g., cardiac function imaging or blood
flow velocity mapping.

Finally, in [70], authors propose a method to estimate the variable noise maps
in MRI assuming SENSE and GRAPPA reconstruction. Although the results are
precise, the drawback of this method is that some prior information about the recon-
struction process is needed: namely the sensitivity map estimated for each coil (for
SENSE) or the GRAPPA reconstruction coefficients. Although these parameters can
be obtained from the scanner, they are not always available in clinical acquisitions.
This limitation, present in most of the reviewed methods, is the main motivation of
this current work.

3 A homomorphic approach to non-stationary noise estimation

In what follows we will assume that, due to the processing done in the scanner, the
final image I(x) is corrupted with noise whose variance is x−dependent. For the
sake of generality and simplicity, no specific pMRI reconstruction method will be
considered. We will also assume that only one single 2D image is available and no
extra parameters are known. Note that, unlike our proposal, some of the estimation
methods proposed in the literature are based on the availability of multiple repeti-
tions or information about the reconstruction process. The methodology presented
is based on the initial assumption that the spatial dependent σ2(x) shows a low
variability, i.e., it can be considered a low pass signal. Therefore, it can be sepa-
rated from the noise pattern that multiplies it. This is a rational assumption in MRI
acquisitions.

In the following study, three different cases will be considered: Gaussian, Rayleigh
and Rician. Although the latest is the most suitable model for MRI, the first one
provides a good alternative for high SNR. It also presents a solid alternative to an
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automatic estimator built-in inside the scanning software before the magnitude is
calculated. Finally, for the sake of completeness, the Rayleigh case is also consid-
ered since it is the lower boundary for the Rician case when the SNR tends to zero.

3.1 The Gaussian case

Let us first assume a simple case in which an image A(x) is corrupted with additive
Gaussian noise with zero mean and spatially-dependent variance σ2(x):

I(x) = A(x) +N(x; 0, σ2(x))

= A(x) + σ(x) ·N(x; 0, 1). (13)

Our purpose is to estimate σ(x) from the final image I(x). To that aim, we use a
homomorphic filtering that will extract the spatially variant pattern of noise.

Let us assume that the variance of noise σ2(x) slowly varies across the image,
i.e. it is a low frequency signal. We remove the mean of the image to avoid any
contribution of A(x):

In(x) = I(x)− E{I(x)} = σ(x) ·N(x).

where E{I(x)} denotes the expectation value in each point of the image, i.e. the
local mean, so that E{I(x)} = A(x). Next, we separate signals σ(x) and N(x) by
applying the logarithm:

log |In(x)| = log σ(x)︸ ︷︷ ︸
low frequency

+ log |N(x)|︸ ︷︷ ︸
higher frequency

.

The noise term log |N(x)| has its energy distributed along all frequencies, while the
term log σ(x) is a low frequency signal by hypothesis. The latest can be recovered
using a low pass filtering of log |In(x)|:

LPF {log |In(x)|} ≈ log σ(x) + δN (14)

with δN being a low pass residue of log |N(x)|. This residue must be calculated to
remove it from the estimation. If we assume that the LPF has a small passband, the
LPF {log |N(x)|} is a good estimator of the local mean. By hypothesis, N(x) is
stationary, and therefore the mean is the same for all pixels. Thus, we can consider
the LPF as a good approximation of the mean of the signal:

LPF {log |N(x)|} ≈ E {log |N(x)|} .

Since we know that N(x) follows a Gaussian distribution (with zero mean and
unitary variance), then |N(x)| follows a half-normal distribution, and the mean of
log |N(x)| can be written as
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were γ is the Euler-Mascheroni constant. With this solution, and with δN =
E {log |N(x; 0, 1)|}, eq. (8) becomes:

LPF {log |In(x)|} ≈ log σ(x)− log
√

2− γ

2
. (16)

And taking the exponential of each term:

eLPF{log |In(x)|} ≈ σ(x)
e−γ/2√

2
. (17)

Thus, we can define an estimator for σ(x) as

σ̂(x) =
√

2eLPF{log |I(x)−E{I(x)}|}+γ/2. (18)

The whole estimation pipeline for the Gaussian case is depicted in Fig. 1. Note that
a practical problem may arise when estimating the local mean. This estimation is
usually carried out by local sample moments under the assumption of local station-
arity. This assumption is not valid in regions with more than one tissues, particularly
on the edges, and therefore the estimation can be biased. The proposed methodol-
ogy overcomes this problem, even when the estimation of E{I(x)} is not perfectly
achieved. Note that the edges within the image are high frequency areas. The low
pass filtering used for the homomorphic separation will remove the effect of edges
in the calculation of local moments.

3.2 The Rayleigh case

We know that in those areas of MRI data where the signal is absent, under certain
conditions, the noise is Rayleigh distributed ([79, 47]). The Rayleigh distribution in
the background of the acquisitions has traditionally been used for noise estimation
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in the stationary case. However, once σ(x) becomes x-dependent, the estimation
over the background might not be related to the estimation over the signal areas.
Nevertheless, for the sake of completeness, we add the Rayleigh case here as a
previous step for the Rician case. In addition, note that it can be also used in a
calibration step or to design coil configuration attending to the generated noise map.
Furthermore, note that the spatially variable noise here proposed is similar to some
speckle models in literature, and results can be easily extrapolated.

Let us assume a complex Gaussian noise with zero mean and spatially-dependent
variance σ2(x):

N0(x) = Nr(x; 0, σ2(x)) + j ·Ni(x; 0, σ2(x)). (19)

The module of N0(x) follows a Rayleigh distribution

R(x;σ(x)) = |N0(x)|

= σ(x) ·
√
N2
r (x; 0, 1) +N2

i (x; 0, 1)

= σ(x) ·R1(x; 1) (20)

As in the Gaussian case, our purpose is to estimate σ(x) from the Rayleigh noise
R(x;σ(x)). To that aim, we use again a homomorphic filtering:

log |R(x;σ(x))| = log σ(x)︸ ︷︷ ︸
low frequency

+ logR1(x; 1)︸ ︷︷ ︸
higher frequency

.

The term log σ(x) is a signal with lower frequency components than logR1(x; 1).
We apply the low pass filtering:

LPF {logR(x;σ(x))} ≈ log σ(x) + LPF {logR1(x; 1)} . (21)

Let us assume again that the LPF is equivalent to a local averaging:

LPF {logR(x;σ(x))} ≈ log σ(x) + E {logR1(x; 1)} .

R1(x; 1) follows a Rayleigh distribution and the mean of logR1(x;σ) can be writ-
ten as

E {logR1(x;σ)} =

∫ ∞

0

log(x)
x

σ2
e−

x2

2σ2 dx

= log σ + log
√

2− γ

2
(22)

Eq. (21) then becomes:

LPF {logR(x;σ(x))} ≈ log σ(x) + log
√

2− γ

2
. (23)

Taking the exponential of each term, we can define an estimator for σ(x) as
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Fig. 2 Pipeline of σ(x) estimation assuming Rayleigh noise. R(x;σ(x)) is the original Rayleigh
image.

σ̂(x) =
1√
2
eLPF{logR(x)}+γ/2. (24)

The whole estimation pipeline for the Rayleigh case is depicted in Fig. 2.

3.3 The Rician case

Finally, we consider the Rician case. Let us assume a signal A(x) corrupted with
complex Gaussian noise with zero mean and spatially-dependent variance σ2(x),
whose module follows a non-stationary Rician distribution:

I(x;A(x), σ(x)) = |A(x) +Nr(x; 0, σ2(x)) + j ·Ni(x; 0, σ2(x))| (25)

For the sake of simplicity, the dependence of I(x) with A(x) and σ(x) will be
removed. As in the Gaussian case, our purpose is to estimate σ(x) from the Rician
signal I(x). However, in this case, the signal and noise are not totally separable.
Nevertheless, following the assumption of slow varying σ(x), the homomorphic
filter can be used to extract the spatially variant pattern of noise.

First, the data is centered by substracting the local mean of the image.

In(x) = I(x)− E{I(x)}

= I(x)− σ(x)

√
π

2
L1/2

(
− A2(x)

2σ2(x)

)

= σ(x) · |s0(x) +Nr(x; 0, 1) + j ·Ni(x; 0, 1)| − σ(x)

√
π

2
L1/2

(
−s

2
0(x)

2

)

= σ(x) · G(s0(x)),

where s0(x) = A(x)
σ(x) is the SNR at each point and G(s0(x)) is a function of the

SNR:

G(s0(x)) = I(x; s0(x), 1)− E{I(x; s0(x), 1)}

= |s0(x) +Nr(x; 0, 1) + j ·Ni(x; 0, 1)| −
√
π

2
L1/2

(
−s

2
0(x)

2

)
.(26)
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Fig. 3 Mean of the logRice distribution as a function of the SNR.

For large values of s0(x), the Rician distribution tends to a Gaussian and, therefore,

lim
s0(x)→∞

G(s0(x)) = Nr(x; 0, 1).

So, for high SNR, the Rician case converges to the Gaussian case previously studied.
To carry out the homomorphic filtering, we first apply the logarithm:

log |In(x)| = log σ(x)︸ ︷︷ ︸
low frequency

+ log |G(s0(x))|︸ ︷︷ ︸
higher frequency

.

and afterwards a low pass filtering:

LPF {log |In(x)|} ≈ log σ(x) + δR (27)

with δR being a low pass residue of log |G(s0(x))|. Again, the LPF behaves as the
expected value of the signal:

LPF {log |G(s0(x))|} ≈ E {log |G(s0(x))|} .

To derive an expression of σ(x) from eq. (26), assuming a generic Rician random
variable IR(x;A, σ), the expected value of log |IR(x)− a1| must be studied:

E {log |IR(x)− a1|} =
1

σ2

∫ ∞

0

log |x− a1| x e−
x2+A2

2σ2 I0

(
Ax

σ2

)
dx (28)

The integral has been numerically solved for A = s0(x), σ = 1 and a1 =√
π
2L1/2

(
− s

2
0(x)
2

)
and depicted in Fig. 3-(a), together with the mean of the log

Gaussian in eq. (15). Note that the value of the mean in eq. (28) depends on the
SNR of the signal and, for larger values of SNR, the value approximates to the
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Fig. 4 Pipeline of σ(x) estimation assuming Rician noise. I(x) is the original image, E{.} is the
local expected value of the signal and |.| is the absolute value.

(a) MR slices from Brainweb

(b) Noise maps

Fig. 5 Synthetic data considered for the experiments. (a) Five different MR images slices from the
Brainweb data base. (b) Synthetic x− dependent noise maps.

Gaussian case. In this case, the expected value can be approximated as the mean
value obtained for the Gaussian case plus a correction factor as follows:

LPF {log |In(x)|} ≈ log σ(x)− log
√

2− γ

2
+ ϕ (s0(x)) . (29)

with ϕ (s0(x)) a Rician/Gaussian correction function, depicted in Fig. 3-(b). Thus,
the estimator for σ(x) can be defined as

σ̂(x) =
√

2eLPF{log |I(x)−E{I(x)}|}e
γ
2−ϕ(s0(x)). (30)

Note that an estimate of the SNR in each pixel is necessary. This requirement is
common to other estimators in literature like [12, 68].

The whole estimation pipeline for the Rician case is depicted in Fig. 4.
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4 Materials and methods

4.1 Materials

For the validation of the proposed estimation methodology, the following data sets
are considered:

1. MR synthetic Images: Five different slices from the Brainweb database ([53]) are
used. These slices are shown in Fig. 5-(a). All the images are noise free and the
background value is zero.

2. Noise maps: The noise is artificially added to the previous MR images. Four
different spatially variant patterns are considered, as depicted in Fig. 5-(b). These
patterns are coherent with noise patterns that can be found in real acquisitions.
The first pattern is derived from a real GRAPPA acquisition ([70]); the second is
a linear combination of the first pattern with a rotation of itself; the third pattern
is a second order polynomial and the fourth is an isotropic Gaussian function.

3. Real SENSE acquisitions: A doped ball phantom is scanned at a 3T Philips
Achieva scanner, TFE Pulse Sequence, 224 × 224 × 59, TR/TE=5.264/2.569,
slice thickness 3.20mm, SENSE with acceleration 2x (reduction factor r = 2).
20 repetitions of the same volume were acquired.

4.2 Methods

For the sake of comparison, the proposed method will be compared to some of the
proposals in the literature for the estimation of non-stationary noise in MRI. Only
those capable to carry out the estimation over a single image are considered:

1. [71]: originally proposed for Gaussian noise. A good behavior for high SNR is
expected, when the Gaussian assumption becomes reasonable. The estimator is
defined as:

σ̂2(x) = 〈
(
I(1,HH)(x)

)2

〉x (31)

with I(1,HH)(x) the high-high subband coefficients of the stationary wavelet
transform (SWT) of the image I(x) at the scale s = 1. The operator 〈I(x)〉x
stands for the local sample estimator of the mean:

〈I(x)〉x =
1

|η(x)|
∑

p∈η(x)

I(p),

with η(x) a neighborhood centered in x.
2. [72]:

σ̂2(x) =
(

2− π

2

)−1
[
〈Ĩ2(x)〉x −

(
〈Ĩ(x)〉x

)2
]

(32)
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where Ĩ(x) is the image after removing low frequencies (low-low subband) by
using a SWT.

3. [74]:
σ̂R(x) = 1.4826 ·MADx

(
I(1,HH)(x)

)
(33)

where I(1,HH)(x) is again the high-high subband coefficients of the SWT of
I(x) and MADx (.) is the (local) median absolute deviation defined as:

MADx (I(x)) = median
p∈η(x)

∣∣∣∣I(p)−median
q∈η(x)

(I(q))

∣∣∣∣ .

For low SNR, a correction is needed:

σ̂(x) =
σ̂R(x)√
ξ(θ)

(34)

where function ξ(θ) is defined in [48] and SNR parameter θ is estimated itera-
tively:

θk+1 =

√√√√ξ(θk)

(
1 +
〈I(x)〉2x
σ̂2
R(x)

)
− 2.

4. [68]: the Gausssian estimator is defined as

σ̂R(x) = 1.4826 ·MADx (I(x)) . (35)

For low SNR, the correction in eq. (34) is applied.
5. [100]:

σ̂2
R(x) = min

p∈η(x) : p6=x
‖R(x)−R(p)‖22 (36)

where R(x) = I(x) − ψ(I(x)) and ψ(I(x)) is the low-pass filtered data. For
low SNR, the correction in eq. (34) is also applied.

6. [69] for one single image:

σ̂(x) = Qn ({p ∈ η(x) : ε(p)}) (37)

where ε is the difference (residual) between noisy data and a biophysical model
projection onto data, see [69] for further details. For the sake of simplicity, and
due to the lack of an available biophysical model, we considered the sample
mean:

ε(x) = |I(x)− 〈I(x)〉x|.
The Qn scale estimator is defined by [161] as

Qn({x1, . . . , xn}) = 2.2219 · {|xi − xj |; i < j}(k)
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where symbol {·}(k) denotes k-th element in the ascending ordered data (order

statistics) and here k =
(

[n/2]+1
2

)
/4. To mitigate the impact of the outliers, Land-

man proposes the re-estimation of the noise map by removing observations with
lower SNR value than an adaptive computed threshold:

t(x) = min

{
5,median

p∈η(x)

{
I(p)/σ̂(x)

}
− 3

}
.

7. The EM estimator in [98]: The estimator is initially defined for working with
multiple samples. To adapt it for a single image, we replace the estimation along
samples by a local estimation:

Âk+1(x) =

〈I1
(
Âk(x)I(x)

σ̂2
k(x)

)

I0

(
Âk(x)I(x)

σ̂2
k(x)

)I(x)

〉

x

(38)

σ̂2
k+1(x) = max

{
1

2

〈
I2(x)

〉
x
− (Âk(x) =2

2
, 0

}
(39)

where In(.) is the modified Bessel function of the first kind and n-th order. The
initialization process of the EM algorithm is obtained by the method of the mo-
ments

Â0(x) =
(
2〈I2(x)〉2x − 〈I4(x)〉x

) 1
4

σ̂2
0(x) =

1

2

(
〈I2(x)〉x − (Â0(x))2

)
.

For all the methods a 5× 5 window has been considered for the local operators,
except for the EM, where the optimal behavior was empirically observed for 3 × 3
neighborhoods. In all the cases where the SWT is needed, the Daubechies (db7)
wavelet was used.

The proposed homomorphic algorithm was implemented using the following
methods:

1. For the initial estimation of the SNR, the output of the local EM estimator for
signal and noise in eq. (38) and eq. (39) has been considered, using a 3 × 3
estimation window:

SNR(x) =
Âk(x)

σ̂k(x)

with k = 10 iterations.
2. The low-pass filter was designed as a Gaussian filter in the Fourier domain with
H(0, 0) = 1 and standard deviation σf . In all the experiments considered, σf
is always in the range 3 − 5. To avoid the border effects due to the implicit
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periodicity of the DFT, the equivalent filter in the Discrete Cosine Transform
domain was used.

5 Experiments and results

For the sake of validation of the proposed methodology, some illustrative experi-
ments are carried out.

5.1 Noise separability

Before testing the estimation methods, we check the initial assumption that the non-
stationary noise can be separated into two different components using a homomor-
phic filtering. To that end, we consider two simple but illustrative examples for the
Gaussian and Rayleigh scenarios. In this experiment we want to show that the pro-
posed methodology can be affectively applied to separate the stationary component
of noise from the spatially variant component.

First, we assume a 256× 256 stationary Gaussian noise image, N(x; 0, 1), with
zero mean and unitary variance. The image is multiplied by the first noise map from
Fig. 5, obtaining a non-stationary noise image N(x; 0, σ(x)) = σ(x) · N(x; 0, 1),
where σ(x) is the considered noise map. The image is then processed using the
pipeline in Fig. 1 but using two different filters: a low pass filter to obtain the noise
map estimation and its high pass counterpart to obtain the stationary noise compo-
nent. The high pass filter is defined in the frequency domain as

HHPF(f) = 1−HLPF(f).

This way, the output of the low pass filter provides the estimator σ̂(x), while the
high pass filter should provide the stationary component of noise NHP(x). Due to
the absolute value in the pipeline, |N(x; 0, 1)| follows a half normal distribution
and, therefore, NHP(x) should also follow that distribution. In order to check this
assumption, we consider the transformation N2

HP(x), which follows a χ square dis-
tribution with 1 degree of freedom. This transformation leads to easily check the
hypothesis of stationarity by means of a Chi-squared goodness-of-fit test2, where
the null hypothesis is: the data follows a χ square distribution with 1 degree of
freedom.

2 The Chi-squared goodness-of-fit test evaluates the discrepancies between the observed frequency
distribution and a particular theoretical distribution. The p-value obtained from this test is inter-
preted based on the significance level (we consider 0.05 in this study) in such a way that if p ≥ 0.05

the null hypothesis is accepted. i.e. there are no statistically significant differences between the fre-
quency distribution and the theoretical distribution.
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Fig. 6 P-values of the Chi-square goodness-of-fit test for the output distributions as a function of
the filter bandwidth. The average of 100 experiments is considered.

All the aforementioned assumptions were checked throughout the pipeline shown
in Fig. 1 for a set of 100 repetitions. First, we tested the Normality assumption of
N(x; 0, 1) and N(x; 0, σ(x)) where the null hypothesis is the stationary Gaussian
distribution. As was expected the goodness-of-fit test for N(x; 0, 1) obtained an av-
erage of 0.4851 for the p-value, and the stationarity of the Gaussian is accepted
for all cases. In the case of N(x; 0, σ(x)), the stationarity of data is discarded in
all repetitions, where a p-value close to 0 was obtained for every case. This result
shows that the noise map applied from Fig. 5 causes a statistically significant non-
stationarity in the data. The goodness-of-fit test performed overN2

HP(x) was applied
for different values of the filter bandwidth σf to check its influence in the stationar-
ity. The averages of p-values for each σf are depicted in Fig. 6-(a), where the null
hypothesis is accepted, i.e. the stationarity of the high pass component of noise is
accepted. Note that these results confirm that the output noise NHP(x) is stationary
for a bandwidth between 3 and 11. These results show the suitability of the proposed
methodology for separating the stationary and non-stationary components of noise
in the Gaussian scenario.

The same experiment is repeated for the Rayleigh scenario. We assume now a
256× 256 Rayleigh image, R(x; 1), with unitary parameter. The image is also mul-
tiplied by the first noise map from Fig. 5, obtaining the non-stationary noise image
R(x;σ(x)) = σ(x) · R(x; 1). The image is then processed using the pipeline in
Fig. 2 with a high pass filter in order to obtain the high pass noise component. The
output of the low pass filter is again considered as the estimator σ̂(x) and the high
pass filter output is supposed to be stationary noise RHP(x). If the separation is
successfully performed, this noise must follow a Rayleigh distribution with unitary
parameter.

The goodness-of-fit test was performed for 100 repetitions of the experiment. We
first tested the stationarity of R(x; 1) and R(x;σ(x)) as in the previous scenario.
Results obtained for R(x;σ(x)) showed an average p-value of 0.5183, and the null
hypothesis (stationarity of the Rayleigh distribution) was confirmed for all the cases.
The test for the non-stationary noise R(x;σ(x)) discarded the null hypothesis for
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Fig. 7 Example of separability of noise components: a) Stationary Rayleigh noise, R(x; 1); b)
Non-stationary Rayleigh noise, R(x;σ(x)); c) High pass component of the homomorphic filter-
ing, RHP(x); d) Low pass component of the homomorphic filtering, σ̂(x). All images has been
normalized for display purposes.

all the cases, obtaining a negligible p-value for all of them. This result also confirms
that the non-stationary noise map applied is statistically significant. The separated
high pass noiseRHP(x) obtained after the homomorphic filtering was also tested for
different values of the filter bandwidth σf . The averages of p-values with respect σf
is depicted in Fig. 6-(b) where the stationarity hypothesis is accepted for a similar
range as in the Gaussian scenario. In the light of these results we can conclude that
the proposed methodology also separates the stationary and non-stationary compo-
nents of noise in the Rayleigh scenario.

For the sake of illustration, the separation process of the non-stationary Rayleigh
noise is depicted in Fig. 7. Note that, due to the presence of a spatial-dependent
σ(x), noise image R(x;σ(x)) in Fig. 7-(b) shows a spatially variant pattern. The
homomorphic filtering process is able to recover the two original components of
noise: in Fig. 7-(c) a stationary noisy pattern RHP(x), and in Fig. 7-(d) the noise
maps corresponding to σ̂(x).

5.2 Synthetic experiments

First, synthetic images and synthetic noise maps shown in Fig. 5 were used. The
noise is generated as a Rician noise with x−dependent variance σ2(x) following
the generic model in eq. (7) and eq. (8). Two different cases are considered: (a) one
single image (first slice in Fig. 5) and one single noise map (first one in Fig. 5);
and (b) all combinations of the five images and the four noise maps (20 different
combinations). All the noise and signals were normalized to have the same maxi-
mum SNR. In order to generate different SNR values, in each case, the noise-free
signal is divided by a constant and the noise is generated using the original map. A
set of 100 repetitions of each configuration is considered. Noise is estimated using
the aforementioned state-of-the-art methods and the relative error for each pixel is
calculated as:

error(x) =
|σ(x)− σ̂(x)|

σ(x)
(40)
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Fig. 8 Error of estimation for parameter σ(x) using synthetic non-stationary Rician noise. The
average of 100 experiments is considered for each configuration. a) Estimation error for a single
image; b) Variance of error for a single image; c) Average of estimation error for 20 different
images.

The average of all the points, repetitions and configurations is considered to achieve
a single value for each SNR. For the single image case, the variance of the error
along the samples is also considered. Results are depicted in Fig. 8. For the sample
moments estimation a window of 5×5 size is used. The homomorphic methods use
a low pass filter set to σf = 3.4. This value has been selected following results in
Fig. 6.

Although a single value is not representative for the estimation of the spatial
pattern, this experiment gives a quantitative insight of the behavior of some of the
methods in literature and the proposed one. Note that, for the whole considered
SNR range, the proposed method clearly outperforms those in literature. For high
SNR values, Gaussian and Rician models converge, as expected. Goossens’ method
shows also a behavior that improves with the SNR, since this method assumes a
Gaussian distribution of the data in the wavelet domain. However, the Gaussian
homomorphic should have the same limitation, and it shows a much better perfor-
mance for all the values.

It is also interesting the results of the variance of the error. The proposed meth-
ods are those with a minimum variance (among those tested), a fact that improves
their suitability as estimators. In addition, note that the Rician homomorphic scheme
shows almost a constant variance for all the SNR values. The EM and the Maximov
estimators, on the other hand, show an increase of the variance for high SNR val-
ues. This effect is due to the dependence of the estimators on the signal: for high
SNR the level of noise is low and the estimators mismatch signal details with noise.
Goossens’ and Liu’s show both consistent variance values for the whole SNR range,
although with higher values than the proposed methods.

In a whole, results do not differ when one single configuration or the 20 possible
configurations are considered. Thus, from the numerical results in this experiment,
the proposed homomorphic method is the one which always shows the lowest es-
timation error and the lowest variance. In addition, note that inside the tissues, the
SNR is usually high enough to use the Gaussian approximation, which is simpler
and does not require a SNR calculation. The error committed in the areas of interest
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(a) Noise estimation

(b) Estimation error

Fig. 9 Noise estimation (top) and estimation error (bottom), using first image and first noise map.
(a) Original noise map; (b) Goossens; (c) Delakis; (d) Liu; (e) Manjón; (f) Maximov; (g) EM; (h)
Landman; (i) Rician Homomorphic; (j) Gaussian Homomorphic.

is very similar to the Rician and, therefore, the Gaussian estimator can be success-
fully used in that case.

In the second experiment we search for visual comparison of the different es-
timation methods. The first image and the first noise map from Fig. 5 were used
to generate a single MRI slice corrupted by non-stationary Rician noise. The noise
map σ(x) is estimated from the magnitude image. Visual results for the considered
methods are depicted in Fig. 9, together with the estimation error, calculated by us-
ing eq. (40). To ease the visualization, the image has been saturated to the maximum
value of the original map. The maximum value of the error was also limited to 1,
although some of the methods showed much greater errors.

This experiment clearly shows the suitable behavior of the homomorphic ap-
proach when compared to local estimators. The use of a LPF to extract the noise
map leads to avoid the granular pattern and to eliminate the influence of the edges.
Note that those methods based on local estimation precisely show such a granular
pattern due to the use of local neighborhoods with small size. This implies that the
number of points used for estimation is low and, conversely, the variance of the es-
timation is high. Another problem with local estimators is related to the edges of
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(a) Noise estimation

(b) Estimation error

Fig. 10 Noise estimation (top) and estimation error (bottom), using second image and second noise
map. (a) Original noise map; (b) Goossens; (c) Delakis; (d) Liu; (e) Manjón; (f) Maximov; (g) EM;
(h) Landman; (i) Rician Homomorphic; (j) Gaussian Homomorphic.

the image. In those areas where two different tissues or regions lay inside the same
window, the estimation becomes highly biased and causes the miss-estimation of lo-
cal moments. The proposed methodology is able to overcome these local problems
by properly estimating a smooth and reliable noisy pattern. Even when the Rician
hypothesis is relaxed, as in the Gaussian assumption, the method still outperforms
the other methods.

In Fig. 10, we repeat the experiment for the second image and the second noise
maps of Fig. 5. Results are totally coherent with the previous experiment. Once
more, the proposed method shows the best estimation with both assumptions (Rice
and Gaussian). Note that this time, all the results show some influence of the the
high signal areas over the estimated noise map, though it is more subtle with the
homomorphic approach, Fig.10-(i) and 10-(j).
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Fig. 11 Noise estimation using a real SENSE acquisition. (a) EM along 20 samples (Silver stan-
dard); (b) Goossens; (c) Delakis; (d) Liu; (e) Manjón; (f) Maximov; (g) Local EM; (h) Landman;
(i) Rician Homomorphic; (j) Gaussian Homomorphic.

5.3 Real MR acquisition

Finally, an experiment with real acquisitions is carried out. Since a golden standard
is not available, we consider the original (multi-sample) EM estimation of σ(x)
using the 20 samples as a reference (silver standard). We compare it to the average
of the estimation of the map of noise in each of the acquisitions by using the different
estimators. Results are gathered in Fig. 11. Note that only the local EM scheme,
the Landman’s method and the homomorphic approaches are able to follow the
variation pattern in the map of noise. Note also that some of the methods based on
local estimation show a border effect in the boundaries of the slice. This effect is
caused by the larger dimension of the object compared to the FOV, which is not the
case of brain acquisitions, but it is in other areas such as imaging of body or knee.
Thus, it must be taken into consideration.

The proposed methods show a good estimation of the map of noise, coherent with
that considered as silver standard. The local EM approach in Fig. 11-(g) shows here
a very good behavior, which differs from results of previous experiments, where
the worse results were related to those areas with borders and transitions between
different tissues. In this case, the phantom has not inner edges and, thus, the EM
estimator is able to provide a proper estimate of noise in all the signal area. This
different behavior evidences the influence of transitions between different tissues in
local estimation. A problem that the proposed methodology successfully overcomes.

6 Conclusions

A new methodology to estimate spatially variant noise in MR has been presented.
It is based on the homomorphic approach that allows to separate the contribution of
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the pattern of noise and the noise itself. The estimator has proved to be robust, easy
to implement and it does not require additional information about the acquisition,
nor multiple repetitions to carry out the estimation. It also reduces the influence of
borders in the final estimated map, and avoids the traditional granular pattern shown
by methods relying on local estimation. Additionally, results have shown that the
proposed methodology presents the lowest error variance and its independence to
the SNR. This result evidences the suitability of the proposed estimators.

Three different estimators for σ(x) were presented: for the Gaussian, Rayleigh
and Rician cases. While the latest would be the most suitable for MRI, the first one
presents a good alternative, with the advantage of not requiring a prior estimation of
the SNR. The Gaussian estimator could be used as an approximation of the Rician
case that will fail in the low SNR areas: mostly the background, where a proper
estimation is not so relevant. Additionally, it also presents a solid alternative for a
built-in automatic estimator inside the scanning software, which just needs to access
to the final complex image in the processing pipeline just before the absolute value
is taken. Using this complex image, the variable noise pattern can be accurately
estimated without the need of any additional information or SNR estimation.

The proposed methodology shows also a great potential when is jointly used with
other estimation methods. In this paper, we have carried out the estimation over the
x−space using a simple low-pass filtering. However, the homomorphic separation
of noise can also be applied to other methods in the literature, particularly those
based on wavelets. With the proper adjustments, these other methods can improve
in robustness and presumably more accurate results can be achieved.

Finally, in this paper we have only focused on the Rician noise, leaving aside the
nc-χmodel, so popular lately in the literature. It was done under the assumption that
nowadays most acquisitions are based on single coil systems or in pMRI-SENSE
reconstruction. Even those scanning softwares using GRAPPA or similar algorithms
(like Siemens) give also the option of a matched filter reconstruction that lately will
produce Rician data. Nevertheless, the Gaussian approach for high SNR is also valid
for non-stationary nc-χ data, and a correction like the one here proposed for Rician
can be easily derived.
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Blind estimation of spatially variant noise in
GRAPPA MRI

Santiago Aja-Fernández, Gonzalo Vegas-Sánchez-Ferrero∗

Abstract The reconstruction process in multiple coil MRI scanners makes the noise
features in the final magnitude image become non-stationary, i.e. the variance of
noise becomes position-dependent. Therefore, most noise estimators proposed in
the literature cannot be used in multiple-coil acquisitions. This effect is augmented
when parallel imaging methods, such as GRAPPA, are used to increase the acquisi-
tion rate. In this work we propose a new technique that allows the estimation of the
spatially variant maps of noise from the GRAPPA reconstructed signal when only
one single image is available and no additional information is provided. Other es-
timators in the literature need extra information that is not always available, which
has supposed an important limitation in the usage of noise models for GRAPPA. The
proposed approach uses a homomorphic separation of the spatially variant noise in
two terms: a stationary noise term and one low frequency signal that correspond to
the x-dependent variance of noise. The non-stationary variance of noise is estimated
by a low pass filtering. The noise term is obtained via prior wavelet decomposition.
Results in real and synthetic experiments evidence the suitability of the simplifica-
tion used and the good performance of the proposed methodology.

1 Introduction

Noise is one of the main sources of quality deterioration in Magnetic Resonance
(MR) data. It is produced by the stochastic motion of free electrons in the RF coil,
which is a conductor, and by eddy current losses in the patient, which are inductively
coupled to the RF coil. The presence of noisy patterns on the acquired MR signal

∗ This chapter was previously published as: Santiago Aja-Fernández, Gonzalo Vegas-Sánchez-
Ferrero, “Blind estimation of spatially variant noise in GRAPPA MRI”, Proc. of the ISBI, April
2015.
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is a problem that affects not only the visual quality of the images, but also may
interfere with further processing techniques.

The stationary Rician distribution has been widely accepted as a suitable model
for noise in MR magnitude images. The main assumption for this model is that
a single value of σ characterizes the whole data set. However, this premise will
mostly fail when considering modern scanners with multiple-coil antennae. Paral-
lel MRI techniques extended the applicability of these systems by increasing the
image acquisition rate via subsampling of the k–space data. In order to correct the
artifacts created by the subsampling, reconstruction methods such as GeneRalized
Autocalibrated Partially Parallel Acquisitions (GRAPPA) [33] are employed. When
GRAPPA is used for reconstruction, noise in the reconstructed image can be approx-
imated by a non-stationary nc-χ distribution [42]. Nowadays, GRAPPA has become
a de facto standard in the acquisition software of commercial scanners. However,
many processing techniques still assume the stationary Rician distribution, forget-
ting about the non-stationarity of the data. In this context, most noise estimators
proposed in literature are based on the assumption of a single σ value for all the
pixels in the image [47, 84]. There are also some proposals in literature to estimate
noise out of GRAPPA data, such as [70]. However, they all require extra information
about the reconstruction process.

In this paper we propose a new technique to estimate the spatially variant maps
of noise σ(x) from the magnitude signal under GRAPPA reconstructions. The pro-
posal only needs one single magnitude image and no additional information is re-
quired. To that end, the analysis of noise in GRAPPA is carefully studied in order to
properly relax the constraints to provide a blind estimation in realistic scenarios (no
information about coils sensitivities, only one image is provided). For this purpose,
two initial assumptions observed in real cases are considered: (1) The signal-to-
noise ratio (SNR) in each of the coils is high. This assumption allows to relax the
noise characterization to a non-stationary Gaussian model. We will show that this
relaxation is suitable for real MR acquisitions; (2) The variability of the map of
noise is smaller than the variability of the noise itself, i.e., σ(x) is a low frequency
signal when compared to the noise, which is also a rational assumption in MRI ac-
quisitions. Both sources of variability can therefore be separated by using a homo-
morphic transformation [159]. This separation of noise components was previously
described by authors in [75] for SENSE acquisitions.

2 Simplified noise model in GRAPPA

The GRAPPA [33] method reconstructs the full k-space in each coil from a sub–
sampled k-space acquisition. The reconstructed lines are estimated through a linear
combination of the existing samples. According to [51, 42], this reconstruction can
be written in the x–space as a multiplication:
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SRl (x) = |Ω|
L∑

m=1

SSm(x)×Wm(l,x) (1)

where SSl (x) is the subsampled data in coil l-th, with l = 1, · · · , L, and SRl (x)
is the reconstructed data in each coil. Wm(l,x) are the GRAPPA reconstruction
coefficients in the x-space and |Ω| the cardinal of the image in each coil. The recon-
structed image in each coil can be seen as a non-stationary Gaussian image:

SRl (x) = ARl (x) +NRl (x : 0, σRl (x)) (2)

with ARl (x) being the reconstructed signal and NRl (x) a complex Gaussian noise
with zero mean and spatially variant variance. The composite magnitude signal
(CMS) is obtained using the sum-of-squares (SoS) of the reconstructed signal in
each coil:

ML(x) =

√√√√
L∑

l=1

|SRl (x)|2. (3)

In [42] authors pointed out that the resultant distribution of the CMS is not strictly
a nc-χ, but its behavior will be very similar and can be efficiently modeled as such
with a small approximation error. However, the reconstruction method will highly
increase the correlations between the reconstructed signals in each coil, which leads
to a decrease of the number of degrees of freedom of the distribution. As a conse-
quence, the final distribution will show a (reduced) effective number of coils Leff
and an (increased) effective variance of noise σ2

eff:

Leff(x) =
|AR|2 tr (CX) + (tr (CX))

2

A∗RCXAR + ||CX ||2F
; (4)

σ2
eff(x) =

tr (CX)

Leff
. (5)

where CX(x) = WΣW∗ is the covariance matrix of the interpolated data at each
spatial location, AR(x) = [AR1 , · · · , ARL ]T is the noise-free reconstructed signal,
||.||F is the Frobenius norm, Σ is the covariance matrix of the original data and
W(x) is the L × L GRAPPA interpolation matrix for each x. Although the nc-χ
model is feasible for GRAPPA, the resulting distribution is non-stationary since the
effective parameters are spatially dependent.

The main inconvenience of this noise model is that not only σ2
eff(x) has to be

estimated for each point of the image, but also Leff(x). In addition, the product
σ2

eff(x)·Leff(x) is also spatially dependent, which complicates any blind parameters
estimation.

If we assume a high SNR, the non-stationary nc-χ model can be simplified: if
ARl (x) >> σRl (x)) in eq. (2), then the SoS in eq. (3) can be approximated using a
Taylor series as:

ML(x) ≈ AT (x) +NR(x; 0, σ2
T (x)), (6)
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Fig. 1 Ratio of experiments in which the Gaussian distribution hypothesis is accepted, using a
Pearson goodness-of-fit test. Left: ρ = 0.1. Right: L = 8.

where A2
T (x) = A∗RAR and NR(x; 0, σ2

T (x)) is a non-stationary Gaussian noise
with zero mean and variance:

σ2
T (x) = |Ω|2

A∗RCXAR

A∗RAR
= |Ω|2 A∗SW∗WΣW∗WAS

A∗SW∗WAS
. (7)

Matrix AS = [AS1 , · · · , ASL]T is the original sampled signal (without noise), and
AR = W · AS . The variance of noise depends on the position, the GRAPPA re-
construction coefficients, the original covariance matrix and the noise-free signals.

Finally, note that the variance of noise for the simplified model in eq. (7) is con-
sistent to the formulation of effective values proposed in [42] and eq. (5).

The suitability of the Gaussian simplification for nc-χ data was validated by
means of a Pearson goodness-to-fit test. The p-value obtained from this test is in-
terpreted based on a significance level of 0.05: if p ≥ 0.05 the null hypothesis (the
data follows a Gaussian distribution) is accepted, i.e. there are no statistically signif-
icant differences between the frequency distribution and the theoretical distribution.
The validation was performed by generating a series of discrete correlated complex
Gaussian random variables (500 samples per variable). Different values for SNR in
each coil, L (number of coils) and ρ (correlation coefficient) were used. L variables
were combined using the SoS, see eq. (3). 1000 experiments of each configuration
were considered. The ratio of experiments in which the hypothesis is accepted is de-
picted in Fig. 1. For the majority of the configurations, for an SNR> 2 the Gaussian
assumption can be accepted in around the 95% of the experiments, which means
that, in most of the practical situations in MRI, this assumption will be valid.

3 Blind Noise estimation for grappa

In what follows the simplified non-stationary Gaussian model of eq. (6) will be
assumed for GRAPPA, where an image AT (x) is corrupted with additive Gaussian
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noise with zero mean and spatially-dependent variance σ2
T (x). Eq. (6) can be written

as
ML(x) = AT (x) + σT (x) ·N(x; 0, 1).

Our purpose here is to estimate σT (x) from the final image ML(x) with no ad-
ditional information assumed (blind estimation). To that aim, we propose a homo-
morphic separation of the noise components to extract the spatially variant pattern
of noise.

Let us assume that the variance of noise σ2
T (x) slowly varies across the image,

i.e. it is a low frequency signal. To remove the contribution of the signal AT (x),
we will use the stationary wavelet transform (SWT). We define I(1,HH)(x) as the
high-high subband coefficients of the SWT of the image ML(x) at the scale s = 1.
Typically, this subband is considered to be an only noise component when the data
follows a Gaussian distribution [71]:

I(1,HH)(x) ≈ σT (x) ·N(x; 0, 1).

Next, we separate signals σT (x) and N(x) by applying the logarithm:

log |I(1,HH)(x)| = log σT (x)︸ ︷︷ ︸
low frequency

+ log |N(x)|︸ ︷︷ ︸
higher frequency

.

The noise term log |N(x)| has its energy distributed along all frequencies, while the
term log σT (x) is a low frequency signal by hypothesis. The later can be recovered
using a low pass filtering (LPF):

LPF
{

log |I(1,HH)(x)|
}
≈ log σT (x) + δN (8)

with δN being a low pass residue of log |N(x)|. This residue must be calculated
to remove it from the estimation. If we assume that the LPF has a small passband,
the LPF {log |N(x)|} is a good estimator of the local mean. By hypothesis, N(x)
is stationary, and therefore the local mean is the same for all pixels. Thus, we can
consider the LPF as a good approximation of the mean of the signal:

LPF {log |N(x)|} ≈ E {log |N(x)|} .

|N(x)| follows a half-normal distribution with expectation

E {log |N(x; 0, 1)|} = − log
√

2− γ

2

where γ is the Euler-Mascheroni constant. With this solution, eq. (8) becomes:

LPF
{

log |I(1,HH)(x)|
}
≈ log σT (x)− log

√
2− γ

2
. (9)

Thus, we can define an estimator for σT (x) as
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Fig. 2 Estimation of σT (x). a) Std. of 100 samples; b) Theoretical value; c) Estimation over 1
sample (homomorphic); d) Estimation over 1 sample (Goossens).

σ̂T (x) =
√

2eLPF{log |I(1,HH)(x)|}+γ/2. (10)

4 Results

For the sake of validation, first, a synthetic experiment is carried out using a 2D
synthetic slice from the BrainWeb dataset, with intensity values in [0− 255]. 8-coil
systems where simulated using a realistic sensitivity map. The image in each coil
is corrupted with Gaussian noise with variance σ2 = 100 and correlation between
coils ρ = 0.1. The k–space is uniformly subsampled by a factor of 2, keeping 32
ACS lines. The CMS is reconstructed using GRAPPA and SoS. 100 repetitions of
the experiment are considered to obtain statistical measures.

Before carrying out the estimation, a Pearson goodness-of-fit test is carried out
for each point for the 100 repetitions where the null hypothesis is again that the
data follows a Gaussian distribution. In the 91.85% of the area of interest (the back-
ground is not considered for the experiments) the null hypothesis is accepted. So,
since the Gaussian assumption can be applied for this configuration, we can use the
proposed methodology to estimate the noise.

For the sake of comparison, the estimation of the GRAPPA noise maps is done
using the following methods: 1) The sample variance for each location when 100
realizations of the same experiments are considered; 2) the theoretical value of the
simplified model in eq. (7); 3) the proposed homomorfic estimation over one sample;
4) the method proposed by Goossens in [71] over one sample. This method also uses
the SWT to estimate the spatially variant pattern of noise. In all the cases where the
SWT is needed, the Daubechies (db7) wavelet is used. Results are shown in Fig.2.
The homomorphic scheme matches the noise maps predicted by the theoretical value
in Fig. 2-b. The experiment clearly shows the suitable behavior of the homomorphic
approach when compared to methods that use local estimators, like Goossens’. The
use of a LPF to extract the noise map leads to avoid the granular pattern and to
eliminate the influence of the edges.

For the last experiment, real acquisitions are considered. 100 repetitions of the
same slice of a phantom, scanned in an 8-channel head coil on a GE Signa 1.5T
EXCITE 12m4 scanner with FGRE Pulse Sequence to generate low SNR, see Fig. 3.



Blind estimation of spatially variant noise in GRAPPA MRI 237

Fig. 3 Slice of an 8-coil acquisition of a doped ball phantom.

Fig. 4 Noise estimation over the phantom. a) Standard deviation of 100 samples; b) Homomorphic
estimation of one sample; c) Estimation using Goossens’ method.

Matrix size 128×128, TR/TE 8.6/3.38 ms, FOV 21×21cm, slice thickness 1mm.
All the 100 samples are 2× subsampled. The GRAPPA reconstruction coefficients
are derived from one sample, using 16 ACS lines, and used for interpolation in all
samples. The CMS is obtained by SoS.

First, the Pearson goodness-of-fit test is repeated for each point for the 100 repeti-
tions. For the 94.02% of points inside the signal area the null hypothesis is accepted
(91.1% if the whole image is considered). Again, the Gaussian assumption holds,
even when the original images may look vey noisy. Results of the estimation are
in Fig. 4. Once more, the homomorphic approach succeeds in following the spatial
pattern of the variance of noise.

Additionally, in order to compare the capability to successfully estimate the non-
stationary variance of noise with just one single image, we calculated the ratio of
pixels laying in the 95% confidence interval provided by the estimation of the stan-
dard deviation with different number of samples. In Fig. 5 this ratio is depicted
for both methods. Note that the homomorphic approach outperforms the Goosens’
method in all the cases, and more than 90% of pixels lay within the confidence in-
terval obtained for 20 different acquisitions. This result evidences that the proposed
method provides with just one acquisition similar results to the ones obtained with
a higher number of acquisitions.

5 Conclusions

A new methodology to estimate spatially variant noise in GRAPPA-reconstructed
MRI without any additional knowledge has been presented. It is based on the homo-
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Fig. 5 Ratio of pixels whose variance estimates calculated with one image lay within the 95%
confidence interval of the non-stationary variance of noise for an increasing number of acquisitions.

morphic approach that allows separating the contribution of the pattern of noise and
the noise itself after a wavelet decomposition. The estimator has proved to be robust,
easy to implement and it does not require additional information about the acqui-
sition, nor multiple repetitions to carry out the estimation. Visual results show that
it succeeds in extracting the non-stationary component of noise, while it avoids the
traditional granular pattern shown by methods relying on local estimation. For the
whole methodology, a simplified model of noise for GRAPPA has been adopted. Al-
though this Gaussian model might seem inaccurate, some initial experiments point
out that it can be a suitable model for typical GRAPPA acquisitions. On this pa-
per, only synthetic data and a real phantom have been used to test the Gaussianity
assumption. In the future, we expect to extend the evaluation of this model over
multiple MRI acquisitions with different protocols and over different areas of the
body. We are confident that the trend holds. Finally, the estimator here proposed
has been focused on GRAPPA but it can be easily extrapolated to non-accelerated
multiple coil acquisitions with SoS reconstruction.
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netic resonance imaging acoustic noise generated by a 4.7 t experimental system, Acta Oto-
Laryngologica 120 (6) (2000) 739–743.

4. G. McGibney, M. Smith, Unbiased signal-to-noise ratio measure for magnetic resonance
images, Med. Phys. 20 (4) (1993) 1077–1078.

5. H. Gudbjartsson, S. Patz, The Rician distribution of noisy MRI data, Magn. Reson. Med.
34 (6) (1995) 910–914.

6. S. Aja-Fernández, M. Niethammer, M. Kubicki, M. E. Shenton, C.-F. Westin, Restoration
of DWI data using a Rician LMMSE estimator, IEEE Trans. Med. Imag. 27 (10) (2008)
1389–1403.

7. J. Sijbers, A. J. den Dekker, D. Van Dyck, E. Raman, Estimation of signal and noise from
Rician distributed data, in: Proc. of the Int. Conf. on Signal Proc. and Comm., Las Palmas de
Gran Canaria, Spain, 1998, pp. 140–142.
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78. P. Coupé, J. V. Manjón, E. Gedamu, D. Arnold, M. Robles, D. L. Collins, Robust Rician
noise estimation for MR images, Med. Imag. Anal. 14 (4) (2010) 483–493.

79. A. Macovski, Noise in MRI, Magn. Reson. Med. 36 (1996) 494–497.
80. J. Sijbers, A. den Dekker, P. Scheunders, D. Van Dyck, Maximum-likelihood estimation of

Rician distribution parameters, IEEE Trans. Med. Imag. 17 (3) (1998) 357–361.
81. J. Sijbers, A. den Dekker, J. Van Audekerke, M. Verhoye, D. Van Dyck, Estimation of the

noise in magnitude MR images, Magn. Reson. Imag. 16 (1) (1998) 87–90.
82. J. Sijbers, A. J. den Dekker, Maximum likelihood estimation of signal amplitude and noise

variance form MR data, Magn. Reson. Imag. 51 (2004) 586–594.



References 243

83. J. Sijbers, A. J. den Dekker, D. Poot, M. Verhoye, N. Van Camp, A. Van der Linden, Ro-
bust estimation of the noise variance from background MR data, in: Proc. of SPIE. Medical
Imaging 2006: Image Processing, Vol. 6144, 2006, pp. 2018–2028.

84. J. Sijbers, et al, Automatic estimation of the noise variance from the histogram of a magnetic
resonance image, in: Physics in Medicine and Biology, Vol. 52, 2007, pp. 1335–1348.

85. P. Getreuer, M. Tong, L. Vese, A variational model for the restoration of MR images cor-
rupted by blur and rician noise, in: G. Bebis, R. Boyle, B. Parvin, D. Koracin, S. Wang,
K. Kyungnam, B. Benes, K. Moreland, C. Borst, S. DiVerdi, C. Yi-Jen, J. Ming (Eds.), Ad-
vances in Visual Computing, Vol. 6938 of Lecture Notes in Computer Science, Springer
Berlin / Heidelberg, 2011, pp. 686–698.

86. R. Nowak, Wavelet-based Rician noise removal for Magnetic Resonance Imaging, IEEE
Trans. Image Process. 8 (10) (1999) 1408–1419.

87. S. Basu, T. Fletcher, R. Whitaker, Rician noise removal in diffusion tensor MRI, in: Proceed-
ings of MICCAI, Vol. 1, 2006, pp. 117–125.
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115. A. Pižurica, W. Philips, I. Lemahieu, M. Acheroy, A versatile Wavelet domain noise filtration
technique for medical imaging, IEEE Trans. Med. Imag. 22 (3) (2003) 323–331.

116. M. Lysaker, A. Lundervold, X. Tai, Noise removal using fourth order partial differential
equations with applications to medical magnetic resonance imaging in space and time, IEEE
Trans. Image Process. 12 (12).

117. T. McGraw, B. C. Vemuri, Y. Chen, M. Rao, T. Mareci, DT-MRI denoising and neuronal
fiber tracking, Med. Imag. Anal. 8 (2004) 95–111.

118. C. B. Ahn, Y. C. Song, D. J. Park, Adaptive template filtering for signal-to-noise ratio en-
hancement in magnetic resonance imaging, IEEE Trans. Med. Imag. 18 (6) (1999) 549–556.

119. S. Awate, R. W. RT, Nonparametric neighborhood statistics for MRI denoising, in: Proc. Int.
Conf. Inf. Process. Med. Imaging, Vol. 3565, 2005, pp. 677–688.

120. J. Hu, N. C. Beaulieu, Accurate closed-form approximations to Ricean sum distributions and
densities, IEEE Communications letters 9 (2) (2005) 133–135.

121. S. M. Kay, Fundamentals of statistical signal processing: Estimation theory, Prentice Hall,
New Jersey, 1993.

122. A. Papoulis, Probability, Random Variables and Stochastic Processes, Mc-Graw Hill, New
York, NY, 1991.

123. N. C. Beaulieu, An infinite series for the computation of the complementary probability
distribution function of a sum of independent ramdom variables and its application to the
sum of Rayleigh random variables, IEEE Trans. on Comm. 38 (9) (1990) 1463–1473.

124. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables, ninth Edition, Dover, New York, 1964.

125. J. S. Lim, Two Dimensional Signal and Image Processing, Prentice Hall, Englewood Cliffs,
NJ, 1990.

126. Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: from error
visibility to structural similarity, IEEE Trans. Image Process. 13 (4) (2004) 600–612.

127. S. Aja-Fernández, R. San-José-Estépar, C. Alberola-López, C.-F. Westin, Image quality as-
sesment based on local variance, in: Proc of the 28th IEEE International Conference of the
Engineering in Medicine and Biology Society (EMBC), New York, 2006, pp. 4815–4818.



References 245

128. Live database.
URL http://live.ece.utexas.edu/research/quality/subjective.
htm
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